1
|
Li Q, Ming R, Huang L, Zhang R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024; 16:218. [PMID: 38399272 PMCID: PMC10892956 DOI: 10.3390/pharmaceutics16020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives to protein antibodies, peptides have been applied as useful targeting ligands for targeted biomedical imaging, drug delivery and PDT. In addition, other functionalities of peptides such as stimuli responsiveness, self-assembly, and therapeutic activity can be integrated with photosensitizers to yield versatile peptide-based nanosystems for PDT. In this article, we start with a brief introduction to PDT and peptide-based nanosystems, followed by more detailed descriptions about the structure, property, and architecture of peptides as background information. Finally, the most recent advances in peptide-based nanosystems for PDT are emphasized and summarized according to the functionalities of peptide in the system to reveal the design and development principle in different therapeutic circumstances. We hope this review could provide useful insights and valuable reference for the development of peptide-based nanosystems for PDT.
Collapse
Affiliation(s)
- Qiuyan Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiqi Ming
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Huang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruoyu Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, Cordani M, Moosavi MA. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm 2024; 649:123622. [PMID: 37989403 DOI: 10.1016/j.ijpharm.2023.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.
Collapse
Affiliation(s)
- Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Saadati
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Marco Cordani
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
3
|
Zhang A, Gao L. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials. Int J Nanomedicine 2023; 18:6233-6256. [PMID: 37936951 PMCID: PMC10626338 DOI: 10.2147/ijn.s436268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
Radiotherapy is a pivotal method for treating malignant tumors, and enhancing the therapeutic gain ratio of radiotherapy through physical techniques is the direction of modern precision radiotherapy. Due to the inherent physical properties of high-energy radiation, enhancing the therapeutic gain ratio of radiotherapy through radiophysical techniques inevitably encounters challenges. The combination of hyperthermia and radiotherapy can enhance the radiosensitivity of tumor cells, reduce their radioresistance, and holds significant clinical utility in radiotherapy. Multifunctional nanomaterials with excellent biocompatibility and safety have garnered widespread attention in tumor hyperthermia research, demonstrating promising potential. Utilizing nanotechnology as a sensitizing carrier in conjunction with radiotherapy, and high atomic number nanomaterials can also serve independently as radiosensitizing carriers. This synergy between tumor hyperthermia and radiotherapy may overcome many challenges currently limiting tumor radiotherapy, offering new opportunities for its further advancement. In recent years, the continuous progress in the synthesis and design of novel nanomaterials will propel the future development of medical imaging and cancer treatment. This article summarizes the radiosensitizing mechanisms and effects based on gold nanotechnology and provides an overview of the advancements of other nanoparticles (such as bismuth-based nanomaterials, magnetic nanomaterials, selenium nanomaterials, etc.) in the process of radiation therapy.
Collapse
Affiliation(s)
- Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| | - Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, Hebei, People’s Republic of China
| |
Collapse
|
4
|
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22:169. [PMID: 37814270 PMCID: PMC10561438 DOI: 10.1186/s12943-023-01865-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Institute, Research and Development Center for Biotechnology, Shahrekord, Chaharmahal and Bakhtiari, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Chaharmahal and Bakhtiari, Iran
| | | | | | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Devendra Pratap Rao
- Department of Chemistry, Coordination Chemistry Laboratory, Dayanand Anglo-Vedic (PG) College, Kanpur-208001, U.P, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM Institute of Science and Technology, SRM College Of Pharmacy, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező U. 15-17, 1084, Budapest, Hungary
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ayesha Amajd
- Faculty of Organization and Management, Silesian University of Technology, 44-100, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Polo II, 3030-788, Coimbra, Portugal
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | | | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, 82817, Jazan, Saudi Arabia
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Zhou XQ, Wang P, Ramu V, Zhang L, Jiang S, Li X, Abyar S, Papadopoulou P, Shao Y, Bretin L, Siegler MA, Buda F, Kros A, Fan J, Peng X, Sun W, Bonnet S. In vivo metallophilic self-assembly of a light-activated anticancer drug. Nat Chem 2023; 15:980-987. [PMID: 37169984 PMCID: PMC10322715 DOI: 10.1038/s41557-023-01199-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Vadde Ramu
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Suhua Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Selda Abyar
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | | | - Yang Shao
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Buda
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China.
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands.
| |
Collapse
|
6
|
Louis L, Chee BS, McAfee M, Nugent M. Electrospun Drug-Loaded and Gene-Loaded Nanofibres: The Holy Grail of Glioblastoma Therapy? Pharmaceutics 2023; 15:1649. [PMID: 37376095 DOI: 10.3390/pharmaceutics15061649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
To date, GBM remains highly resistant to therapies that have shown promising effects in other cancers. Therefore, the goal is to take down the shield that these tumours are using to protect themselves and proliferate unchecked, regardless of the advent of diverse therapies. To overcome the limitations of conventional therapy, the use of electrospun nanofibres encapsulated with either a drug or gene has been extensively researched. The aim of this intelligent biomaterial is to achieve a timely release of encapsulated therapy to exert the maximal therapeutic effect simultaneously eliminating dose-limiting toxicities and activating the innate immune response to prevent tumour recurrence. This review article is focused on the developing field of electrospinning and aims to describe the different types of electrospinning techniques in biomedical applications. Each technique describes how not all drugs or genes can be electrospun with any method; their physico-chemical properties, site of action, polymer characteristics and the desired drug or gene release rate determine the strategy used. Finally, we discuss the challenges and future perspectives associated with GBM therapy.
Collapse
Affiliation(s)
- Lynn Louis
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Bor Shin Chee
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, F91YW50 Sligo, Ireland
| | - Michael Nugent
- Materials Research Institute, Faculty of Engineering, Technological University of the Shannon, Midlands Midwest, Athlone Main Campus, N37HD68 Athlone, Ireland
| |
Collapse
|
7
|
Ma S, Kim JH, Chen W, Li L, Lee J, Xue J, Liu Y, Chen G, Tang B, Tao W, Kim JS. Cancer Cell-Specific Fluorescent Prodrug Delivery Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207768. [PMID: 37026629 PMCID: PMC10238224 DOI: 10.1002/advs.202207768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/04/2023]
Abstract
Targeting cancer cells with high specificity is one of the most essential yet challenging goals of tumor therapy. Because different surface receptors, transporters, and integrins are overexpressed specifically on tumor cells, using these tumor cell-specific properties to improve drug targeting efficacy holds particular promise. Targeted fluorescent prodrugs not only improve intracellular accumulation and bioavailability but also report their own localization and activation through real-time changes in fluorescence. In this review, efforts are highlighted to develop innovative targeted fluorescent prodrugs that efficiently accumulate in tumor cells in different organs, including lung cancer, liver cancer, cervical cancer, breast cancer, glioma, and colorectal cancer. The latest progress and advances in chemical design and synthetic considerations in fluorescence prodrug conjugates and how their therapeutic efficacy and fluorescence can be activated by tumor-specific stimuli are reviewed. Additionally, novel perspectives are provided on strategies behind engineered nanoparticle platforms self-assembled from targeted fluorescence prodrugs, and how fluorescence readouts can be used to monitor the position and action of the nanoparticle-mediated delivery of therapeutic agents in preclinical models. Finally, future opportunities for fluorescent prodrug-based strategies and solutions to the challenges of accelerating clinical translation for the treatment of organ-specific tumors are proposed.
Collapse
Affiliation(s)
- Siyue Ma
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- Key Laboratory of Emergency and Trauma, Ministry of EducationCollege of Emergency and TraumaHainan Medical UniversityHaikou571199China
| | - Ji Hyeon Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lu Li
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Jieun Lee
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Junlian Xue
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Guang Chen
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
8
|
Miretti M, Graglia MAG, Suárez AI, Prucca CG. Photodynamic Therapy for glioblastoma: a light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
10
|
Larue L, Kenzhebayeva B, Al-Thiabat MG, Jouan-Hureaux V, Mohd-Gazzali A, Wahab HA, Boura C, Yeligbayeva G, Nakan U, Frochot C, Acherar S. tLyp-1: A peptide suitable to target NRP-1 receptor. Bioorg Chem 2023; 130:106200. [PMID: 36332316 DOI: 10.1016/j.bioorg.2022.106200] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.
Collapse
Affiliation(s)
- Ludivine Larue
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Bibigul Kenzhebayeva
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Gulzhakhan Yeligbayeva
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Ulantay Nakan
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
11
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
12
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
13
|
Bonan NF, Ledezma DK, Tovar MA, Balakrishnan PB, Fernandes R. Anti-Fn14-Conjugated Prussian Blue Nanoparticles as a Targeted Photothermal Therapy Agent for Glioblastoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2645. [PMID: 35957076 PMCID: PMC9370342 DOI: 10.3390/nano12152645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Prussian blue nanoparticles (PBNPs) are effective photothermal therapy (PTT) agents: they absorb near-infrared radiation and reemit it as heat via phonon-phonon relaxations that, in the presence of tumors, can induce thermal and immunogenic cell death. However, in the context of central nervous system (CNS) tumors, the off-target effects of PTT have the potential to result in injury to healthy CNS tissue. Motivated by this need for targeted PTT agents for CNS tumors, we present a PBNP formulation that targets fibroblast growth factor-inducible 14 (Fn14)-expressing glioblastoma cell lines. We conjugated an antibody targeting Fn14, a receptor abundantly expressed on many glioblastomas but near absent on healthy CNS tissue, to PBNPs (aFn14-PBNPs). We measured the attachment efficiency of aFn14 onto PBNPs, the size and stability of aFn14-PBNPs, and the ability of aFn14-PBNPs to induce thermal and immunogenic cell death and target and treat glioblastoma tumor cells in vitro. aFn14 remained stably conjugated to the PBNPs for at least 21 days. Further, PTT with aFn14-PBNPs induced thermal and immunogenic cell death in glioblastoma tumor cells. However, in a targeted treatment assay, PTT was only effective in killing glioblastoma tumor cells when using aFn14-PBNPs, not when using PBNPs alone. Our methodology is novel in its targeting moiety, tumor application, and combination with PTT. To the best of our knowledge, PBNPs have not been investigated as a targeted PTT agent in glioblastoma via conjugation to aFn14. Our results demonstrate a novel and effective method for delivering targeted PTT to aFn14-expressing tumor cells via aFn14 conjugation to PBNPs.
Collapse
Affiliation(s)
- Nicole F. Bonan
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
| | - Debbie K. Ledezma
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
| | - Matthew A. Tovar
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Preethi B. Balakrishnan
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
| | - Rohan Fernandes
- George Washington Cancer Center, George Washington University, Washington, DC 20052, USA; (N.F.B.); (D.K.L.); (M.A.T.); (P.B.B.)
- Institute for Biomedical Sciences, George Washington University, Washington, DC 20052, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- Department of Medicine, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
14
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Moussaron A, Jouan-Hureaux V, Collet C, Pierson J, Thomas N, Choulier L, Veran N, Doyen M, Arnoux P, Maskali F, Dumas D, Acherar S, Barberi-Heyob M, Frochot C. Preliminary Study of New Gallium-68 Radiolabeled Peptide Targeting NRP-1 to Detect Brain Metastases by Positron Emission Tomography. Molecules 2021; 26:7273. [PMID: 34885871 PMCID: PMC8659110 DOI: 10.3390/molecules26237273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [18F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φF) could be observed due to the better water solubility of Cy5. [68Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = -1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [68Ga]Ga-NODAGA-K(Cy5)DKPPR.
Collapse
Affiliation(s)
- Albert Moussaron
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; (A.M.); (P.A.)
| | - Valérie Jouan-Hureaux
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (V.J.-H.); (J.P.); (N.T.); (M.B.-H.)
| | - Charlotte Collet
- Nancyclotep Molecular Imaging Platform, F-54500 Vandœuvre-lès-Nancy, France; (C.C.); (N.V.); (M.D.); (F.M.)
- Université de Lorraine, INSERM, U1254, IADI, F-54500 Vandœuvre-lès-Nancy, France
| | - Julien Pierson
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (V.J.-H.); (J.P.); (N.T.); (M.B.-H.)
| | - Noémie Thomas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (V.J.-H.); (J.P.); (N.T.); (M.B.-H.)
| | | | - Nicolas Veran
- Nancyclotep Molecular Imaging Platform, F-54500 Vandœuvre-lès-Nancy, France; (C.C.); (N.V.); (M.D.); (F.M.)
| | - Matthieu Doyen
- Nancyclotep Molecular Imaging Platform, F-54500 Vandœuvre-lès-Nancy, France; (C.C.); (N.V.); (M.D.); (F.M.)
- Université de Lorraine, INSERM, U1254, IADI, F-54500 Vandœuvre-lès-Nancy, France
| | - Philippe Arnoux
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; (A.M.); (P.A.)
| | - Fatiha Maskali
- Nancyclotep Molecular Imaging Platform, F-54500 Vandœuvre-lès-Nancy, France; (C.C.); (N.V.); (M.D.); (F.M.)
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Muriel Barberi-Heyob
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (V.J.-H.); (J.P.); (N.T.); (M.B.-H.)
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; (A.M.); (P.A.)
| |
Collapse
|
16
|
Improvements in Gold Nanorod Biocompatibility with Sodium Dodecyl Sulfate Stabilization. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their well-defined plasmonic properties, gold nanorods (GNRs) can be fabricated with optimal light absorption in the near-infrared region of the electromagnetic spectrum, which make them suitable for cancer-related theranostic applications. However, their controversial safety profile, as a result of surfactant stabilization during synthesis, limits their clinical translation. We report a facile method to improve GNR biocompatibility through the presence of sodium dodecyl sulfate (SDS). GNRs (120 × 40 nm) were synthesized through a seed-mediated approach, using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant to direct the growth of nanorods and stabilize the particles. Post-synthesis, SDS was used as an exchange ligand to modify the net surface charge of the particles from positive to negative while maintaining rod stability in an aqueous environment. GNR cytotoxic effects, as well as the mechanisms of their cellular uptake, were examined in two different cancer cell lines, Lewis lung carcinoma (LLC) and HeLa cells. We not only found a significant dose-dependent effect of GNR treatment on cell viability but also a time-dependent effect of GNR surfactant charge on cytotoxicity over the two cell lines. Our results promote a better understanding of how we can mediate the undesired consequences of GNR synthesis byproducts when exposed to a living organism, which so far has limited GNR use in cancer theranostics.
Collapse
|
17
|
Ye S, Wu J, Wang Y, Hu Y, Yin T, He J. Quantitative proteomics analysis of glioblastoma cell lines after lncRNA HULC silencing. Sci Rep 2021; 11:12587. [PMID: 34131250 PMCID: PMC8206103 DOI: 10.1038/s41598-021-92089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/02/2021] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a life-threatening brain tumor. This study aimed to identify potential targets of the long noncoding RNA (lncRNA) HULC that promoted the progression of GBM. Two U87 cell lines were constructed: HULC-siRNA and negative control (NC). Quantitative real-time PCR (qRT-PCR) was performed to validate the transfection efficiency of HULC silencing vector. Mass spectrometry (MS) was used to generate proteomic profiles for the two cell lines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to distinguish HULC-related genes and pathway mapping. Colony formation, Transwell, and wound-healing assays were used to investigate the functional effects of HULC knockdown on GBM. We identified 112 up-regulated proteins and 24 down-regulated proteins from a total of 4360 quantified proteins. GO enrichment illustrated that these proteins were mainly involved in organelle structure, catalysis, cell movement, and material metabolism. KEGG pathway analysis indicated that some of these proteins were significantly enriched in tight junction, metabolic pathways, and arachidonic acid metabolism. In vitro experiments demonstrated that HULC knockdown inhibited GBM cell proliferation, invasion, and migration. Our KEGG analyses revealed that PLA2G4A was a shared protein in several enriched pathways. HULC silencing significantly down-regulated the expression of PLA2G4A. Knockdown of HULC changed the proteomic characteristics of GBM and altered the behaviors of GBM cells. Specifically, we identified PLA2G4A as an HULC target in GBM. This study provides a new perspective on the mechanisms and potential drug targets of GBM treatment.
Collapse
Affiliation(s)
- Shan Ye
- Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jing Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Hefei, China.,Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Yiran Wang
- Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuchen Hu
- Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Tiantian Yin
- Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jie He
- Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China. .,Department of Pathology, The First Affiliated Hospital of USTC, Hefei, China. .,Department of Pathology, Anhui Provincial Cancer Hospital, Hefei, China.
| |
Collapse
|
18
|
Development of gold nanorods for cancer treatment. J Inorg Biochem 2021; 220:111458. [PMID: 33857697 DOI: 10.1016/j.jinorgbio.2021.111458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
There has been growing interest in the application of gold nanorods (GNRs) to tumor therapy due to the unique properties they possess. In the past, GNRs were not used in clinical treatments as they lacked stability in vivo and were characterized by potential toxicity. Despite these issues, the significant potential for utilizing GNRs to conduct safe and effective treatments for tumors cannot be ignored. Therefore, it remains crucial to thoroughly investigate the mechanisms behind the toxicity of GNRs in order to provide the means of overcoming obstacles to its full application in the future. This review presents the toxic effects of GNRs, the factors affecting toxicity and the methods to improve biocompatibility, all of which are presently being studied. Finally, we conclude by briefly discussing the current research status of GNRs and provide additional perspective on the challenges involved along with the course of development for GNRs in the future.
Collapse
|
19
|
Larue L, Moussounda Moussounda Koumba T, Le Breton N, Vileno B, Arnoux P, Jouan-Hureaux V, Boura C, Audran G, Bikanga R, Marque SRA, Acherar S, Frochot C. Design of a Targeting and Oxygen-Independent Platform to Improve Photodynamic Therapy: A Proof of Concept. ACS APPLIED BIO MATERIALS 2021; 4:1330-1339. [PMID: 35014484 DOI: 10.1021/acsabm.0c01227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is a promising technique to treat different kinds of disease especially cancer. PDT requires three elements: molecular oxygen, a photoactivatable molecule called the photosensitizer (PS), and appropriate light. Under illumination, the PSs generate, in the presence of oxygen, the formation of reactive oxygen species including singlet oxygen, toxic, which then destroys the surrounding tissues. Even if PDT is used with success to treat actinic keratosis or prostate cancer for example, PDT suffers from two major drawbacks: the lack of selectivity of most of the PSs currently used clinically as well as the need for oxygen to be effective. To remedy the lack of selectivity, targeting the tumor neovessels is a promising approach to destroy the vascularization and cause asphyxia of the tumor. KDKPPR peptide affinity for the neuropilin-1 (NRP-1) receptor overexpressed on endothelial cells has already been proven. To compensate for the lack of oxygen, we focused on photoactivatable alkoxyamines (Alks), molecules capable of generating toxic radicals by light activation. In this article, we describe the synthesis of a multifunctional platform combining three units: a PS for an oxygen-dependent PDT, a peptide to target tumor neovessels, and an Alk for an oxygen-independent activity. The synthesis of the compound was successfully carried out, and the study of its photophysical properties showed that the PS retained its capacity to form singlet oxygen and the affinity tests confirmed the affinity of the compound for NRP-1. Thanks to the electron paramagnetic resonance spectroscopy, a technique of choice for radical investigation, the radicals generated by the illumination of the Alk could be detected. The proof of concept was thus successfully established.
Collapse
Affiliation(s)
- Ludivine Larue
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.,Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | | | - Nolwenn Le Breton
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, F-67000 Strasbourg, France.,French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS 3443 F-67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, F-67000 Strasbourg, France.,French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS 3443 F-67000 Strasbourg, France
| | | | | | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Gerard Audran
- Aix Marseille Université, CNR, ICR Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Raphael Bikanga
- Laboratoire de Substances Naturelles et de Synthèse Organométalliques, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville, Gabon
| | - Sylvain R A Marque
- Aix Marseille Université, CNR, ICR Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| |
Collapse
|
20
|
Ibarra LE, Vilchez ML, Caverzán MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res 2020; 99:1024-1047. [PMID: 33370846 DOI: 10.1002/jnr.24776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) has recently gained attention as an alternative treatment of malignant gliomas. Glioblastoma (GBM) is the most prevalent within tumors of the central nervous system (CNS). Conventional treatments for this CNS tumor include surgery, radiation, and chemotherapy. Surgery is still being considered as the treatment of choice. Even so, the poor prognosis and/or recurrence of the disease after applying any of these treatments highlight the urgency of exploring new therapies and/or improving existing ones to achieve the definitive eradication of tumor masses and remaining cells. PDT is a therapeutic modality that involves the destruction of tumor cells by reactive oxygen species induced by light, which were previously treated with a photosensitizing agent. However, in recent years, its experimental application has expanded to other effects that could improve overall performance against GBM. In the current review, we revisit the main advances of PDT for GBM management and also, the recent mechanistic insights about cellular and molecular aspects related to tumoral resistance to PDT of GBM.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - María Laura Vilchez
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| | - Laura Natalia Milla Sanabria
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, UNRC, Río Cuarto, Argentina
| |
Collapse
|
21
|
Gries M, Thomas N, Daouk J, Rocchi P, Choulier L, Jubréaux J, Pierson J, Reinhard A, Jouan-Hureaux V, Chateau A, Acherar S, Frochot C, Lux F, Tillement O, Barberi-Heyob M. Multiscale Selectivity and in vivo Biodistribution of NRP-1 -Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma. Int J Nanomedicine 2020; 15:8739-8758. [PMID: 33223826 PMCID: PMC7673487 DOI: 10.2147/ijn.s261352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). METHODS The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. RESULTS The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 μM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. CONCLUSION Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
Collapse
Affiliation(s)
- Mickaël Gries
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Noémie Thomas
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Joël Daouk
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Paul Rocchi
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
| | - Laurence Choulier
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
| | - Justine Jubréaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Julien Pierson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Aurélie Reinhard
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Valérie Jouan-Hureaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Alicia Chateau
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
| | - François Lux
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
- Institut Universitaire de France, Paris, France
| | | | - Muriel Barberi-Heyob
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| |
Collapse
|
22
|
Wen Y, Schreiber CL, Smith BD. Dual-Targeted Phototherapeutic Agents as Magic Bullets for Cancer. Bioconjug Chem 2020; 31:474-482. [PMID: 31940166 DOI: 10.1021/acs.bioconjchem.9b00836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imagine the ideal cancer drug that only kills cancer cells and does not affect nearby noncancerous cells. In the words of Paul Ehrlich, the drug acts like a magic bullet. This Topical Review summarizes an emerging new strategy to achieve this audacious goal. The central concept is a dual-targeted phototherapeutic agent for photodynamic or photothermal therapy. The dual-targeted phototherapeutic agent promotes cancer cell specificity by leveraging three levels of selectivity. Cell death will only occur in the anatomical location that is illuminated with light (Selectivity Level 1) and in cancer cells within the illumination area that have selectively accumulated the agent (Selectivity Level 2). The cancer cell killing effect is highly localized if the agent accumulates in hypersensitive intracellular organelles (Selectivity Level 3). The common targeting units for cancer cells and organelles are described, along with recent examples of dual-targeted phototherapeutic agents that incorporate these two classes of targeting units.
Collapse
Affiliation(s)
- Ying Wen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Cynthia L Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|