1
|
Zhang H, Song X, Ge S, Song W, Wang F, Yin Q, Zhang M, Zhuang P, Zhang Y. Zixue Powder attenuates septic thrombosis via reducing neutrophil extracellular trap through blocking platelet STING activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118337. [PMID: 38740110 DOI: 10.1016/j.jep.2024.118337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.
Collapse
Affiliation(s)
- Hanyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xuejiao Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Shining Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wen Song
- Tianjin Hongrentang Pharmaceutical Co., Ltd, Tianjin, 300193, China
| | - Fan Wang
- Tianjin Hongrentang Pharmaceutical Co., Ltd, Tianjin, 300193, China
| | - Qingsheng Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Mixia Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
2
|
Coupland LA, Spiro C, Quah BJC, Orlov A, Browne A, O'Meara CH, Kang CW, Frost S, Schulz L, Lombardo L, Parish CR, Aneman A. PLASMA DYNAMICS OF NEUTROPHIL EXTRACELLULAR TRAPS AND CELL-FREE DNA IN SEPTIC AND NONSEPTIC VASOPLEGIC SHOCK: A PROSPECTIVE COMPARATIVE OBSERVATIONAL COHORT STUDY. Shock 2024; 62:193-200. [PMID: 38813920 DOI: 10.1097/shk.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: The association between neutrophil extracellular traps (NETs) and the requirement for vasopressor and inotropic support in vasoplegic shock is unclear. This study aimed to investigate the dynamics of plasma levels of NETs and cell-free DNA (cfDNA) up to 48 h after the admission to the intensive care unit (ICU) for management of vasoplegic shock of infectious (SEPSIS) or noninfectious (following cardiac surgery, CARDIAC) origin. Methods: This is a prospective, observational study of NETs and cfDNA plasma levels at 0H (admission) and then at 12H, 24H, and 48H in SEPSIS and CARDIAC patients. The vasopressor inotropic score (VIS), the Sequential Organ Failure Assessment (SOFA) score, and time spent with invasive ventilation, in ICU and in hospital, were recorded. Associations between NETs/cfDNA and VIS and SOFA were analyzed by Spearman's correlation (rho), and between NETs/cfDNA and ventilation/ICU/hospitalization times by generalized linear regression. Results: Both NETs and cfDNA remained elevated over 48 h in SEPSIS (n = 46) and CARDIAC (n = 30) patients, with time-weighted average concentrations greatest in SEPSIS (NETs median difference 0.06 [0.02-0.11], P = 0.005; cfDNA median difference 0.48 [0.20-1.02], P < 0.001). The VIS correlated to NETs (rho = 0.3-0.60 in SEPSIS, P < 0.01, rho = 0.36-0.57 in CARDIAC, P ≤ 0.01) and cfDNA (rho = 0.40-0.56 in SEPSIS, P < 0.01, rho = 0.38-0.47 in CARDIAC, P < 0.05). NETs correlated with SOFA. Neither NETs nor cfDNA were independently associated with ventilator/ICU/hospitalization times. Conclusion: Plasma levels of NETs and cfDNA correlated with the dose of vasopressors and inotropes administered over 48 h in patients with vasoplegic shock from sepsis or following cardiac surgery. NETs levels also correlated with organ dysfunction. These findings suggest that similar mechanisms involving release of NETs are involved in the pathophysiology of vasoplegic shock irrespective of an infectious or noninfectious etiology.
Collapse
Affiliation(s)
| | - Calista Spiro
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Benjamin J-C Quah
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anna Orlov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anna Browne
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, The Canberra Hospital, Garran, ACT, Australia
| | - Chang-Won Kang
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Luis Schulz
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia
| | - Lien Lombardo
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | |
Collapse
|
3
|
Jones C, La Flamme A, Larsen P, Hally K. CPHEN-017: Comprehensive phenotyping of neutrophil extracellular traps (NETs) on peripheral human neutrophils. Cytometry A 2024. [PMID: 38867433 DOI: 10.1002/cyto.a.24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With the recent discovery of their ability to produce neutrophil extracellular traps (NETs), neutrophils are increasingly appreciated as active participants in infection and inflammation. NETs are characterized as large, web-like networks of DNA and proteins extruded from neutrophils, and there is considerable interest in how these structures drive disease in humans. Advancing research in this field is contingent on developing novel tools for quantifying NETosis. To this end, we have developed a 7-marker flow cytometry panel for analyzing NETosis on human peripheral neutrophils following in vitro stimulation, and in fresh circulating neutrophils under inflammatory conditions. This panel was optimized on neutrophils isolated from whole blood and analyzed fresh or in vitro stimulated with phorbol 12-myristate 13-acetate (PMA) or ionomycin, two known NET-inducing agonists. Neutrophils were identified as SSChighFSChighCD15+CD66b+. Neutrophils positive for amine residues and 7-Aminoactinomycin D (7-AAD), our DNA dye of choice, were deemed necrotic (Zombie-NIR+7-AAD+) and were removed from downstream analysis. Exclusion of Zombie-NIR and positivity for 7-AAD (Zombie-NIRdim7-AAD+) was used here as a marker of neutrophil-appendant DNA, a key feature of NETs. The presence of two NET-associated proteins - myeloperoxidase (MPO) and neutrophil elastase (NE) - were utilized to identify neutrophil-appendant NET events (SSChighFSChighCD15+CD66b+Zombie NIRdim7-AAD+MPO+NE+). We also demonstrate that NETotic neutrophils express citrullinated histone H3 (H3cit), are concentration-dependently induced by in vitro PMA and ionomycin stimulation but are disassembled with DNase treatment, and are present in both chronic and acute inflammation. This 7-color flow cytometry panel provides a novel tool for examining NETosis in humans.
Collapse
Affiliation(s)
- Ceridwyn Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anne La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Muñoz-Callejas A, González-Sánchez E, Silván J, San Antonio E, González-Tajuelo R, Ramos-Manzano A, Sánchez-Abad I, González-Alvaro I, García-Pérez J, Tomero EG, de Vicuña RG, Vicente-Rabaneda EF, Castañeda S, Urzainqui A. Low P-Selectin Glycoprotein Ligand-1 Expression in Neutrophils Associates with Disease Activity and Deregulated NET Formation in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24076144. [PMID: 37047117 PMCID: PMC10093849 DOI: 10.3390/ijms24076144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by the generation of anti-DNA autoantibodies due to exposure of immune cells to excessive amounts of extracellular DNA. Lack of P-selectin in mice induces the development of a lupus-like syndrome and patients with cutaneous lupus have reduced P-selectin expression in skin vessels. Using flow cytometry we analyzed in healthy donors and patients the expression of P-selectin Glycoprotein Ligand-1 (PSGL-1) in circulating neutrophils and the implication of PSGL-1/P-selectin interaction in neutrophil extracellular traps (NETs) generation. We found a statistical significance that neutrophils from active SLE patients have a reduced expression of PSGL-1 and low levels of PSGL-1 in neutrophils from SLE patients associated with the presence of anti-dsDNA antibodies, clinical lung involvement, Raynaud's phenomenon, and positive lupus anticoagulant. PSGL-1 is present along the DNA in the NET. In healthy donors, neutrophil interaction with immobilized P-selectin triggers Syk activation, increases the NETs percentage and reduces the amount of DNA extruded in the NETs. In active SLE patients, neutrophil interaction with P-selectin does not activate Syk or reduce the amount of DNA extruded in the NETs, that might contribute to increase the extracellular level of DNA and hence, to disease pathogenesis.
Collapse
Affiliation(s)
- Antonio Muñoz-Callejas
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Esther San Antonio
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Rafael González-Tajuelo
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Alejandra Ramos-Manzano
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Inés Sánchez-Abad
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Isidoro González-Alvaro
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Javier García-Pérez
- Pulmonology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Eva G Tomero
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Rosario García de Vicuña
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Esther F Vicente-Rabaneda
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| | - Santos Castañeda
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
- Catedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006 Madrid, Spain
| |
Collapse
|
5
|
Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality. J Clin Med 2022; 11:jcm11237161. [PMID: 36498735 PMCID: PMC9740249 DOI: 10.3390/jcm11237161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Several predictive biomarkers for coronavirus disease (COVID-19)-associated mortality in critically ill patients have been described. Although mitochondrial DNA (mtDNA) is elevated in patients with COVID-19, the association with coagulation function and its predictive power for mortality is unclear. Accordingly, this study investigates the predictive power of mtDNA for in-hospital mortality in critically ill patients with COVID-19, and whether combining it with thromboelastographic parameters can increase its predictive performance. This prospective explorative study included 29 patients with COVID-19 and 29 healthy matched controls. mtDNA encoding for NADH dehydrogenase 1 (ND1) was quantified using a quantitative polymerase chain reaction analysis, while coagulation function was evaluated using thromboelastometry and impedance aggregometry. Receiver operating characteristic (ROC) curves were used for the prediction of in-hospital mortality. Within the first 24 h, the plasma levels of mtDNA peaked significantly (controls: 65 (28-119) copies/µL; patients: 281 (110-805) at t0, 403 (168-1937) at t24, and 467 (188-952) copies/µL at t72; controls vs. patients: p = 0.02 at t0, p = 0.03 at t24, and p = 0.44 at t72). The mtDNA levels at t24 showed an excellent predictive performance for in-hospital mortality (area under the ROC curve: 0.90 (0.75-0.90)), which could not be improved by the combination with thromboelastometric or aggregometric parameters. Critically ill patients with COVID-19 present an early increase in the plasma levels of ND1 mtDNA, lasting over 24 h. They also show impairments in platelet function and fibrinolysis, as well as hypercoagulability, but these do not correlate with the plasma levels of fibrinogen. The peak plasma levels of mtDNA can be used as a predictive biomarker for in-hospital mortality; however, the combination with coagulation parameters does not improve the predictive validity.
Collapse
|
6
|
RUBLENKO S, RUBLENKO M, YAREMCHUK A, BAKHUR T. Clinical-haemostasis assessment of anaesthesia regimens in dogs with visceral and somatic types of pain response. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.979508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The article investigates the influence of visceral (surgical treatment of abdominal pathologies) and somatic pain syndrome (osteosynthesis) on dogs’ clinical parameters and haemostasis. It was found, that the best variant for abdominal operations in dogs is acepromazine-ketamine-propofol anaesthesia and for osteosynthesis – acepromazine-butorphanol-ketamine. The use of neuroleptics (acepromazine, xylazine) with general anaesthetics (ketamine, propofol, sodium thiopental) in abdominal operations ensured rapid entry into anaesthesia (< 2 min) and duration 19–23 min. The use of acepromazine-ketamine-propofol provided well-managed anaesthesia during 11.1 ± 0.5 min, rapid recovery (17.3 ± 2.4 min), without significant changes in heart rate (HR), respiratory rate (RR), blood pressure (BP), haemoglobin saturation (SpO2). Unbalanced anaesthesia and insufficient analgesia under xylazine-ketamine caused a sharp decrease in HR, BP, RR with their increase due to visceral pain, led to hypoxia (SpO2 < 92%). During the osteosynthesis, acepromazine-butorphanol-propofol-ketamine anaesthesia provided complete analgesia with twice the rapid recovery of dogs without significant changes in HR, RR, BP, SpO2 during surgery. Acepromazine-ketamine-thiopental anaesthesia accompanied by pronounced analgesia with a decrease in HR and BP. Xylazine-ketamine-thiopental anaesthesia, under apparent analgesia, led to hypotension (decreased HR, BP) and hypoxia (decreased RR, SpO2). The data obtained will optimize the selection of drugs' combinations for dogs' anaesthesia, taking into account the type of pain response.
Collapse
|
7
|
Delta-like canonical Notch ligand 1 is predictive for sepsis and acute kidney injury in surgical intensive care patients. Sci Rep 2022; 12:13355. [PMID: 35922468 PMCID: PMC9349261 DOI: 10.1038/s41598-022-17778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
The early identification of sepsis in surgical intensive care patients is challenging due to the physiological postoperative alterations of vital signs and inflammatory biomarkers. Soluble Delta-like protein 1 (sDLL1) may be a potential discriminatory biomarker for this purpose. For this reason, this study aimed to evaluate sDLL1 for the identification of sepsis in a cohort of surgical intensive care patients. This study comprises a secondary analysis of a prospective observational study including 80 consecutive patients. The study groups included 20 septic shock patients, 20 patients each undergoing major abdominal surgery (MAS) and cardiac artery bypass surgery (CABG), and 20 matched control subjects (CTRL). The surveillance period was 72 h. The plasma concentration of sDLL1 was measured with ELISA. The plasma levels of sDLL1 were significantly elevated in septic patients compared to both surgical cohorts (septic vs. all postoperative time points, data are shown as median and interquartile range [IQR]; septic shock: 17,363 [12,053–27,299] ng/mL, CABG 10,904 [8692–16,250] ng/mL; MAS 6485 [4615–9068] ng/mL; CTRL 5751 [3743–7109] ng/mL; septic shock vs. CABG: p < 0.001; septic shock vs. MAS: p < 0.001). ROC analysis showed a sufficient prediction of sepsis with limited specificity (AUCROC 0.82 [0.75–0.82], sensitivity 84%, specificity 68%). The plasma levels of sDLL correlated closely with renal parameters (creatinine: correlation coefficient = 0.60, r2 = 0.37, p < 0.0001; urea: correlation coefficient = 0.52, r2 = 0.26, p < 0.0001), resulting in a good predictive performance of sDLL1 for the identification of acute kidney injury (AKI; AUCROC 0.9 [0.82–0.9], sensitivity 83%, specificity 91%). By quantifying the plasma concentration of sDLL1, sepsis can be discriminated from the physiological postsurgical inflammatory response in abdominal and cardiac surgical patients. However, sDLL1 has only limited specificity for the detection of sepsis in cardiac surgical patients, which may be explained by impaired renal function. Based on these findings, this study identifies the predictive value of sDLL1 for the detection of AKI, making it a potential biomarker for surgical intensive care patients. Trial registration DRKS00013584, Internet Portal of the German Clinical Trials Register (DRKS), registration date 11.07.2018, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013584.
Collapse
|
8
|
Xing Y, Jiang Y, Xing S, Mao T, Guan G, Niu Q, Zhao X, Zhou J, Jing X. Neutrophil extracellular traps are associated with enhanced procoagulant activity in liver cirrhosis patients with portal vein thrombosis. J Clin Lab Anal 2022; 36:e24433. [PMID: 35435260 PMCID: PMC9102620 DOI: 10.1002/jcla.24433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Patients with liver cirrhosis (LC) commonly exhibit hypercoagulability and tend to develop thrombosis. Neutrophil extracellular traps (NETs) are associated with a variety of thrombotic conditions, but their possible value in portal vein thrombosis (PVT) is not known. We assessed whether NETs promote thrombosis and contribute to the procoagulant state in patients with LC. METHODS The circulating levels of NETs markers (myeloperoxidase, neutrophil elastase, citrullinated histone H3) were measured in 72 patients (median age, 55 years; 48 [66.7%] men) with LC from September 2020 to February 2021. Then they were divided into two groups: patients with or without PVT. NETs procoagulant activity was assessed based on thrombin-antithrombin complex (TAT complex) and Factor X. The levels of plasma markers were determined by ELISA. RESULTS There were 28 patients with PVT and 44 patients without PVT. The levels of NETs markers and hypercoagulability markers in the plasma of cirrhosis patients with PVT were significantly higher than those of cirrhosis patients without PVT (p < 0.05). Additionally, the levels of the NETs markers correlated with TAT complex and Factor X (Spearman correlation rho >0.73, p < 0.0001). CONCLUSIONS Neutrophil extracellular traps seem to enhance procoagulant activity in LC patients with PVT; thus, they may be a practical predictor of PVT as well as a rapid and easy-to-use diagnostic and treatment guide for PVT in patients with cirrhosis.
Collapse
Affiliation(s)
- Yueyi Xing
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yueping Jiang
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shichao Xing
- Medical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Mao
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ge Guan
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qinghui Niu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xianzhi Zhao
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianrui Zhou
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xue Jing
- Gastroenterology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
9
|
Sakuma M, Wang X, Ellett F, Edd JF, Babatunde KA, Viens A, Mansour MK, Irimia D. Microfluidic capture of chromatin fibres measures neutrophil extracellular traps (NETs) released in a drop of human blood. LAB ON A CHIP 2022; 22:936-944. [PMID: 35084421 PMCID: PMC8978531 DOI: 10.1039/d1lc01123e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils are the largest population of white blood cells in the circulation, and their primary function is to protect the body from microbes. They can release the chromatin in their nucleus, forming characteristic web structures and trap microbes, contributing to antimicrobial defenses. The chromatin webs are known as neutrophil extracellular traps (NETs). Importantly, neutrophils can also release NETs in pathological conditions related to rheumatic diseases, atherosclerosis, cancer, and sepsis. Thus, determining the concentration of NETs in the blood is increasingly important for monitoring patients, evaluating treatment efficacy, and understanding the pathology of various diseases. However, traditional methods for measuring NETs require separating cells and plasma from blood, are prone to sample preparation artifacts, and cannot distinguish between intact and degraded NETs. Here, we design a microfluidic analytical tool that captures NETs mechanically from a drop of blood and measures the amount of intact NETs unbiased by the presence of degraded NETs in the sample.
Collapse
Affiliation(s)
- Miyuki Sakuma
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Xiao Wang
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Jon F Edd
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kehinde Adebayo Babatunde
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Adam Viens
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
10
|
Itagaki K, Riça I, Konecna B, Kim HI, Park J, Kaczmarek E, Hauser CJ. Role of Mitochondria-Derived Danger Signals Released After Injury in Systemic Inflammation and Sepsis. Antioxid Redox Signal 2021; 35:1273-1290. [PMID: 33847158 PMCID: PMC8905257 DOI: 10.1089/ars.2021.0052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a major public health concern, with high mortality and morbidity, especially among patients undergoing trauma. It is characterized by a systemic inflammatory response syndrome (SIRS) occurring in response to infection. Although classically associated with pathogens, many patients with SIRS do not have infection. The variability of the disease course cannot be fully explained by our current understanding of its pathogenesis. Thus, other factors are likely to play key roles in the development and progression of SIRS/sepsis. Recent Advances: Circulating levels of damage-associated molecular patterns (DAMPs) seem to correlate with SIRS/sepsis morbidity and mortality. Of the known DAMPs, those of mitochondrial (mt) origin have been of particular interest, since their DNA (mtDNA) and formyl peptides (mtFPs) resemble bacterial DNA and peptides, and hence, when released, may be recognized as "danger signals." Critical Issues: mtDAMPs released after tissue injury trigger immune responses similar to those induced by pathogens. Thus, they can result in systemic inflammation and organ damage, similar to that observed in SIRS/sepsis. We will discuss recent findings on the roles of mtDAMPs, particularly regarding the less recognized mtFPs, in the activation of inflammatory responses and development of SIRS/sepsis. Future Directions: There are no established methods to predict the course of SIRS/sepsis, but clinical studies reveal that plasma levels of mtDAMPs may correlate with the outcome of the disease. We propose that non-pathogen-initiated, mtDAMPs-induced SIRS/sepsis events need further studies aimed at early clinical recognition and better treatment of this disease.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Elzbieta Kaczmarek
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Center for Vascular Biology Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Sepsis: Current Clinical Practices and New Perspectives: Introduction to the Special Issue. J Clin Med 2021; 10:jcm10030443. [PMID: 33498815 PMCID: PMC7866043 DOI: 10.3390/jcm10030443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
|
12
|
Blood Levels of Free-Circulating Mitochondrial DNA in Septic Shock and Postsurgical Systemic Inflammation and Its Influence on Coagulation: A Secondary Analysis of a Prospective Observational Study. J Clin Med 2020; 9:jcm9072056. [PMID: 32629885 PMCID: PMC7408641 DOI: 10.3390/jcm9072056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Major surgery is regularly associated with clinical signs of systemic inflammation, which potentially affects the rapid identification of sepsis. Therefore, this secondary analysis of an observational study aims to determine whether NADH dehydrogenase 1 (ND1) mitochondrial DNA (mtDNA) could be used as a potential biomarker for the discrimination between septic shock and postsurgical systemic inflammation. Overall, 80 patients were included (septic shock (n = 20), cardiac artery bypass grafting (CABG, n = 20), major abdominal surgery (MAS, n = 20), and matched controls (CTRL, n = 20)). Quantitative PCR was performed to measure ND1 mtDNA. Thromboelastography was used to analyze the coagulatory system. Free-circulating ND1 mtDNA levels were significantly higher in septic shock patients compared to patients suffering from post-surgical inflammation ({copies/µL}: CTRL: 1208 (668-2685); septic shock: 3823 (2170-7318); CABG: 1272 (417-2720); and MAS: 1356 (694-2845); CTRL vs. septic shock: p < 0.001; septic shock vs. CABG: p < 0.001; septic shock vs. MAS: p = 0.006; CABG vs. MAS: p = 0.01). ND1 mtDNA levels in CABG patients showed a strong positive correlation with fibrinogen (correlation coefficient [r]= 0.57, p < 0.001) and fibrinogen-dependent thromboelastographic assays (maximum clot firmness, EXTEM: r = 0.35, p = 0.01; INTEM: r = 0.31, p = 0.02; FIBTEM: r = 0.46, p < 0.001). In conclusion, plasma levels of free-circulating ND1 mtDNA were increased in septic shock patients and were discriminative between sepsis and surgery-induced inflammation. Furthermore, this study showed an association between ND1 mtDNA and a fibrinogen-dependent pro-coagulatory shift in cardiac surgical patients.
Collapse
|