1
|
Nalepa M, Toczyłowska B, Owczarek A, Skweres A, Ziemińska E, Węgrzynowicz M. Striatum-enriched protein, arginase 2 localizes to medium spiny neurons and controls striatal metabolic profile. Neurochem Int 2025; 182:105907. [PMID: 39581474 DOI: 10.1016/j.neuint.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Arginase 2 (Arg2) is the predominant arginase isoenzyme in the brain, however its distribution appears to be limited to selected, region-specific subpopulations of cells. Although striatum is highly enriched with Arg2, precise localization and function of striatal Arg2 have never been studied. Here, we confirm that Arg2 is the only arginase isoenzyme in the striatum, and, using genetic model of total Arg2 loss, we show that Arg2 in this region is fully responsible for arginase catalytic activity, and its loss doesn't induce compensatory activation of Arg1. We exhibit that Arg2 is present in medium spiny neurons (MSNs), striatum-specific projecting neurons, where it localizes in soma and neuronal processes, and is absent in astrocytes or microglia. Finally, analysis of NMR spectroscopy-measured metabolic profiles of striata of Arg2-null mice enabled to recognize two metabolites (NADH and malonic acid) to be significantly altered compared to control animals. Multivariate comparison of the data using orthogonal projections to latent structures discriminant analysis, allowed for discrimination between control and Arg2-null mice and identified metabolites that contributed the most to this between-group dissimilarity. Our study reveals for the first time the localization of Arg2 in MSNs and demonstrates significant role of this enzyme in regulating striatal metabolism. These findings may be especially interesting in the context of Huntington's disease (HD), a disorder that specifically affects MSNs and in which, with the use of mouse models, the onset of pathological phenotypes was recently shown to be preceded by progressive impairment of striatal Arg2, a phenomenon of an unknown significance for disease pathogenesis.
Collapse
Affiliation(s)
- Martyna Nalepa
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczyłowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Owczarek
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Skweres
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Ziemińska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Węgrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Liu ZH, Huang YC, Kuo CY, Govindaraju DT, Chen NY, Yip PK, Chen JP. Docosahexaenoic Acid-Infused Core-Shell Fibrous Membranes for Prevention of Epidural Adhesions. Int J Mol Sci 2024; 25:13012. [PMID: 39684723 DOI: 10.3390/ijms252313012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Avoiding epidural adhesion following spinal surgery can reduce clinical discomfort and complications. As the severity of epidural adhesion is positively correlated with the inflammatory response, implanting a fibrous membrane after spinal surgery, which can act as a physical barrier to prevent adhesion formation while simultaneously modulates postoperative inflammation, is a promising approach to meet clinical needs. Toward this end, we fabricated an electrospun core-shell fibrous membrane (CSFM) based on polylactic acid (PLA) and infused the fiber core region with the potent natural anti-inflammatory compound docosahexaenoic acid (DHA). The PLA/DHA CSFM can continuously deliver DHA for up to 36 days in vitro and reduce the penetration and attachment of fibroblasts. The released DHA can downregulate the gene expression of inflammatory markers (IL-6, IL-1β, and TNF-α) in fibroblasts. Following an in vivo study that implanted a CSFM in rats subjected to lumbar laminectomy, the von Frey withdrawal test indicates the PLA/DHA CSFM treatment can successfully alleviate neuropathic pain-like behaviors in the treated rats, showing 3.60 ± 0.49 g threshold weight in comparison with 1.80 ± 0.75 g for the PLA CSFM treatment and 0.57 ± 0.37 g for the untreated control on day 21 post-implantation. The histological analysis also indicates that the PLA/DHA CSFM can significantly reduce proinflammatory cytokine (TNF-α and IL-1β) protein expression at the lesion and provide anti-adhesion effects, indicating its vital role in preventing epidural fibrosis by mitigating the inflammatory response.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | | | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
3
|
Schweickart A, Chetnik K, Batra R, Kaddurah-Daouk R, Suhre K, Halama A, Krumsiek J. AutoFocus: a hierarchical framework to explore multi-omic disease associations spanning multiple scales of biomolecular interaction. Commun Biol 2024; 7:1094. [PMID: 39237774 PMCID: PMC11377741 DOI: 10.1038/s42003-024-06724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Recent advances in high-throughput measurement technologies have enabled the analysis of molecular perturbations associated with disease phenotypes at the multi-omic level. Such perturbations can range in scale from fluctuations of individual molecules to entire biological pathways. Data-driven clustering algorithms have long been used to group interactions into interpretable functional modules; however, these modules are typically constrained to a fixed size or statistical cutoff. Furthermore, modules are often analyzed independently of their broader biological context. Consequently, such clustering approaches limit the ability to explore functional module associations with disease phenotypes across multiple scales. Here, we introduce AutoFocus, a data-driven method that hierarchically organizes biomolecules and tests for phenotype enrichment at every level within the hierarchy. As a result, the method allows disease-associated modules to emerge at any scale. We evaluated this approach using two datasets: First, we explored associations of biomolecules from the multi-omic QMDiab dataset (n = 388) with the well-characterized type 2 diabetes phenotype. Secondly, we utilized the ROS/MAP Alzheimer's disease dataset (n = 500), consisting of high-throughput measurements of brain tissue to explore modules associated with multiple Alzheimer's Disease-related phenotypes. Our method identifies modules that are multi-omic, span multiple pathways, and vary in size. We provide an interactive tool to explore this hierarchy at different levels and probe enriched modules, empowering users to examine the full hierarchy, delve into biomolecular drivers of disease phenotype within a module, and incorporate functional annotations.
Collapse
Affiliation(s)
- Annalise Schweickart
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Kelsey Chetnik
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Richa Batra
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Bioinformatics Core, Weill Cornell Medical College-Qatar Education City, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Bioinformatics Core, Weill Cornell Medical College-Qatar Education City, Doha, Qatar
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Zhang ZL, Wu ZY, Liu FY, Hang-YuChen, Zhai SD. Tetrandrine alleviates oxaliplatin-induced mechanical allodynia via modulation of inflammation-related genes. Front Mol Neurosci 2024; 17:1333842. [PMID: 38419796 PMCID: PMC10899404 DOI: 10.3389/fnmol.2024.1333842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Oxaliplatin, a platinum-based chemotherapy drug, causes neuropathic pain, yet effective pharmacological treatments are lacking. Previously, we showed that tetrandrine (TET), with anti-inflammatory properties, reduces mechanical allodynia in nerve-injured mice. This study explores the effect of TET on oxaliplatin-induced mechanical allodynia and gene changes in mice. Male C57BL/6J mice received oxaliplatin intraperitoneally to induce mechanical allodynia. Post-treatment with TET or vehicle, the mechanical withdrawal threshold (WMT) was assessed using von Frey filaments. TET alleviated oxaliplatin-induced mechanical allodynia. RNA sequencing identified 365 differentially expressed genes (DEGs) in the Control vs. Oxaliplatin group and 229 DEGs in the Oxaliplatin vs. TET group. Pearson correlation analysis of co-regulated DEGs and inflammation-related genes (IRGs) revealed 104 co-regulated inflammation-related genes (Co-IRGs) (|cor| > 0.8, P < 0.01). The top 30 genes in the PPI network were identified. Arg2, Cxcl12, H2-Q6, Kdr, and Nfkbia were highlighted based on ROC analysis. Subsequently, Arg2, Cxcl12, Kdr, and Nfkbia were further verified by qRCR. Immune infiltration analysis indicated increased follicular CD4 T cell infiltration in oxaliplatin-treated mice, reduced by TET. Molecular docking showed strong binding affinity between TET and proteins encoded by Arg2, Cxcl12, Kdr, and Nfkbia. In summary, TET may alleviate oxaliplatin-induced peripheral neuropathy in clinical conditions.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Zi-Yang Wu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Feng-Yu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Hang-YuChen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suo-Di Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Bao X, Wang W, Chen X, Feng Y, Xu X, Sun G, Li B, Liu X, Li Z, Yang J. Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Immunol 2022; 13:963931. [PMID: 36211441 PMCID: PMC9538352 DOI: 10.3389/fimmu.2022.963931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
6
|
De Santi C, Nally FK, Afzal R, Duffy CP, Fitzsimons S, Annett SL, Robson T, Dowling JK, Cryan SA, McCoy CE. Enhancing arginase 2 expression using target site blockers as a strategy to modulate macrophage phenotype. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:643-655. [PMID: 36090747 PMCID: PMC9424864 DOI: 10.1016/j.omtn.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Macrophages are plastic cells playing a crucial role in innate immunity. While fundamental in responding to infections, when persistently maintained in a pro-inflammatory state they can initiate and sustain inflammatory diseases. Therefore, a strategy that reprograms pro-inflammatory macrophages toward an anti-inflammatory phenotype could hold therapeutic potential in that context. We have recently shown that arginase 2 (Arg2), a mitochondrial enzyme involved in arginine metabolism, promotes the resolution of inflammation in macrophages and it is targeted by miR-155. Here, we designed and tested a target site blocker (TSB) that specifically interferes and blocks the interaction between miR-155 and Arg2 mRNA, leading to Arg2 increased expression and activity. In bone marrow-derived macrophages transfected with Arg2 TSB (in the presence or absence of the pro-inflammatory stimulus LPS), we observed an overall shift of the polarization status of macrophages toward an anti-inflammatory phenotype, as shown by significant changes in surface markers (CD80 and CD71), metabolic parameters (mitochondrial oxidative phosphorylation) and cytokines secretion (IL-1β, IL-6, and TNF). Moreover, in an in vivo model of LPS-induced acute inflammation, intraperitoneal administration of Arg2 TSB led to an overall decrease in systemic levels of pro-inflammatory cytokines. Overall, this proof-of-concept strategy represent a promising approach to modulating macrophage phenotype.
Collapse
Affiliation(s)
- Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Corresponding author Chiara De Santi, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland.
| | - Frances K. Nally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Remsha Afzal
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Conor P. Duffy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Stephen Fitzsimons
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Stephanie L. Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
7
|
Semis HS, Kandemir FM, Caglayan C, Kaynar O, Genc A, Arıkan SM. Protective effect of naringin against oxaliplatin-induced peripheral neuropathy in rats: A behavioral and molecular study. J Biochem Mol Toxicol 2022; 36:e23121. [PMID: 35670529 DOI: 10.1002/jbt.23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022]
Abstract
Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1β, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Halil S Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Aydın Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefik M Arıkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Zhang W, Yang L, Li L, Feng W. Dihydromyricetin attenuates neuropathic pain via enhancing the transition from M1 to M2 phenotype polarization by potentially elevating ALDH2 activity in vitro and vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1151. [PMID: 33241000 PMCID: PMC7576025 DOI: 10.21037/atm-20-5838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Treatment for neuropathic pain as a refractory disease remains unsatisfactory and represents a significant clinical challenge. A highly effective drug is thus urgently needed for neuropathic pain treatment. Dihydromyricetin (DMY) is a flavonoid with a wide range of biological activities. The purpose of this research is to explore the effects of DMY on neuropathic pain and the underlying mechanism of its effect. Methods The effect of DMY was investigated in BV-2 cells and lipopolysaccharide (LPS)-induced BV-2 cells. A neuropathic pain model was established via spared nerve injury (SNI) surgery in mice, and the protein expression level was detected via Western blot assay. The percent of M1 and M2 phenotype polarization cells were detected via flow cytometry assay. Immunochemical staining assay was also performed to measure the marker levels of the M1 and M2 phenotype polarization cells and aldehyde dehydrogenase 2 (ALDH2) level, and mechanical pain sensitivity was evaluated via measurement of the mechanical withdrawal threshold. Results We found that DMY promoted the transition from M1 to M2 polarization and upregulated the ALDH2 level in vitro and vitro. ALDA-1, an ALDH2 agonist, promoted the switching from M1 to M2 polarization in vivo and vitro. DMY alleviated pain hypersensitivity induced by SNI via enhancing M2 phenotype polarization by elevating ALDH2 activity in mice. After DMY- or ALDA-1-microglia were injected into SNI-induced pain hypersensitive mice, the mechanical withdrawal threshold was increased significantly when compared with the SNI group. Conclusions Our data demonstrated that DMY alleviated neuropathic pain via enhancing the polarization transition from the M1 to M2 phenotype by potentially elevating ALDH2 activity in vitro and vivo. DMY- or ALDA-1-microglia may have alleviative effects on neuropathic pain. The findings herein provide a promising avenue for neuropathic pain treatment, suggesting a new target, ALDH2, in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lingxiao Yang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Feng
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
CX3CR1-Targeted PLGA Nanoparticles Reduce Microglia Activation and Pain Behavior in Rats with Spinal Nerve Ligation. Int J Mol Sci 2020; 21:ijms21103469. [PMID: 32423102 PMCID: PMC7279022 DOI: 10.3390/ijms21103469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Activation of CX3CR1 in microglia plays an important role in the development of neuropathic pain. Here, we investigated whether neuropathic pain could be attenuated in spinal nerve ligation (SNL)-induced rats by reducing microglial activation through the use of poly(D,L-lactic-co-glycolic acid) (PLGA)-encapsulated CX3CR1 small-interfering RNA (siRNA) nanoparticles. After confirming the efficacy and specificity of CX3CR1 siRNA, as evidenced by its anti-inflammatory effects in lipopolysaccharide-stimulated BV2 cells in vitro, PLGA-encapsulated CX3CR1 siRNA nanoparticles were synthesized by sonication using the conventional double emulsion (W/O/W) method and administered intrathecally into SNL rats. CX3CR1 siRNA-treated rats exhibited significant reductions in the activation of microglia in the spinal dorsal horn and a downregulation of proinflammatory mediators, as well as a significant attenuation of mechanical allodynia. These data indicate that the PLGA-encapsulated CX3CR1 siRNA nanoparticles effectively reduce neuropathic pain in SNL-induced rats by reducing microglial activity and the expression of proinflammatory mediators. Therefore, we believe that PLGA-encapsulated CX3CR1 siRNA nanoparticles represent a valuable new treatment option for neuropathic pain.
Collapse
|