1
|
Oshitari T. Translational Research and Therapies for Neuroprotection and Regeneration of the Optic Nerve and Retina: A Narrative Review. Int J Mol Sci 2024; 25:10485. [PMID: 39408817 PMCID: PMC11476551 DOI: 10.3390/ijms251910485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Most retinal and optic nerve diseases pose significant threats to vision, primarily due to irreversible retinal neuronal cell death, a permanent change, which is a critical factor in their pathogenesis. Conditions such as glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration are the top four leading causes of blindness among the elderly in Japan. While standard treatments-including reduction in intraocular pressure, anti-vascular endothelial growth factor therapies, and retinal photocoagulation-can partially delay disease progression, their therapeutic effects remain limited. To address these shortcomings, a range of neuroprotective and regenerative therapies, aimed at preventing retinal neuronal cell loss, have been extensively studied and increasingly integrated into clinical practice over the last two decades. Several of these neuroprotective therapies have achieved on-label usage worldwide. This narrative review introduces several neuroprotective and regenerative therapies for retinal and optic nerve diseases that have been successfully translated into clinical practice, providing foundational knowledge and success stories that serve as valuable references for researchers in the field.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
2
|
Fang Y, Wang Q, Li Y, Zeng L, Liu J, Ou K. On implications of somatostatin in diabetic retinopathy. Neural Regen Res 2024; 19:1984-1990. [PMID: 38227526 DOI: 10.4103/1673-5374.390955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/10/2023] [Indexed: 01/17/2024] Open
Abstract
Somatostatin, a naturally produced neuroprotective peptide, depresses excitatory neurotransmission and exerts anti-proliferative and anti-inflammatory effects on the retina. In this review, we summarize the progress of somatostatin treatment of diabetic retinopathy through analysis of relevant studies published from February 2019 to February 2023 extracted from the PubMed and Google Scholar databases. Insufficient neuroprotection, which occurs as a consequence of declined expression or dysregulation of retinal somatostatin in the very early stages of diabetic retinopathy, triggers retinal neurovascular unit impairment and microvascular damage. Somatostatin replacement is a promising treatment for retinal neurodegeneration in diabetic retinopathy. Numerous pre-clinical and clinical trials of somatostatin analog treatment for early diabetic retinopathy have been initiated. In one such trial (EUROCONDOR), topical administration of somatostatin was found to exert neuroprotective effects in patients with pre-existing retinal neurodysfunction, but had no impact on the onset of diabetic retinopathy. Overall, we concluded that somatostatin restoration may be especially beneficial for the growing population of patients with early-stage retinopathy. In order to achieve early prevention of diabetic retinopathy initiation, and thereby salvage visual function before the appearance of moderate non-proliferative diabetic retinopathy, several issues need to be addressed. These include the needs to: a) update and standardize the retinal screening scheme to incorporate the detection of early neurodegeneration, b) identify patient subgroups who would benefit from somatostatin analog supplementation, c) elucidate the interactions of somatostatin, particularly exogenously-delivered somatostatin analogs, with other retinal peptides in the context of hyperglycemia, and d) design safe, feasible, low cost, and effective administration routes.
Collapse
Affiliation(s)
- Yanhong Fang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Qionghua Wang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Li Zeng
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
3
|
Alkan AA, Arslan B, Özcan D, Tekin K. Serum neopterin and orexin-A levels in different stages of diabetic retinopathy. Clin Exp Optom 2024:1-7. [PMID: 39009974 DOI: 10.1080/08164622.2024.2374875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
CLINICAL RELEVANCE Retinopathy is one of the most common microvascular complications of diabetes mellitus and is the leading cause of vision loss in the working middle-aged population. BACKGROUND This study aimed to investigate the value of neopterin and orexin-A levels in patients with diabetes mellitus with different stages of diabetic retinopathy and without diabetic retinopathy and to compare those findings with results from healthy individuals without diabetes mellitus. METHODS In total, 65 patients with type 2 diabetes mellitus and 22 healthy individuals without diabetes mellitus were enrolled in this prospective study. The participants were separated into four subgroups. The first subgroup included 25 patients without diabetic retinopathy, the second subgroup included 20 patients non-proliferative diabetic retinopathy, the third subgroup included 20 patients with proliferative diabetic retinopathy, and the fourth subgroup included 22 healthy individuals without diabetes mellitus as controls. Serum neopterin and orexin-A levels were analysed and compared among the groups. RESULTS The age and gender of the participants between the four subgroups were not statistically significantly different (p > 0.05). The mean neopterin levels were significantly higher in patients included in the diabetes mellitus subgroups compared with the controls (p < 0.001). Neopterin levels significantly increased as diabetic retinopathy progressed within the diabetes mellitus subgroups. Mean orexin-A levels were significantly lower in the diabetes mellitus subgroups compared with the controls (p < 0.001); however, orexin-A levels were not significantly different within the diabetes mellitus subgroups (p > 0.05). CONCLUSION Patients with diabetes mellitus have higher serum neopterin and lower serum orexin-A levels compared with healthy individuals without diabetes mellitus. Moreover, serum neopterin levels increase with progression of diabetic retinopathy.
Collapse
Affiliation(s)
| | - Burak Arslan
- Department of Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Delil Özcan
- Ophthalmology Department, Seyrantepe Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kemal Tekin
- Ophthalmology Department, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and Perspectives in Relation to the Molecular Basis of Diabetic Retinopathy-A Review. Biomedicines 2023; 11:2951. [PMID: 38001952 PMCID: PMC10669459 DOI: 10.3390/biomedicines11112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus (DM) is a growing problem nowadays, and diabetic retinopathy (DR) is its predominant complication. Currently, DR diagnosis primarily relies on fundoscopic examination; however, novel biomarkers may facilitate that process and make it widely available. In this current review, we delve into the intricate roles of various factors and mechanisms in DR development, progression, prediction, and their association with therapeutic approaches linked to the underlying pathogenic pathways. Specifically, we focus on advanced glycation end products, vascular endothelial growth factor (VEGF), asymmetric dimethylarginine, endothelin-1, and the epigenetic regulation mediated by microRNAs (miRNAs) in the context of DR.
Collapse
Affiliation(s)
- Michał Błaszkiewicz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Agata Walulik
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Kamila Florek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Ignacy Górecki
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Olga Sławatyniec
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
5
|
Vujosevic S, Toma C, Villani E, Nucci P, Brambilla M, Torti E, Leporati F, De Cillà S. LONGITUDINAL MICROVASCULAR AND NEURONAL RETINAL EVALUATION IN PATIENTS WITH DIABETES MELLITUS TYPES 1 AND 2 AND GOOD GLYCEMIC CONTROL. Retina 2023; 43:1723-1731. [PMID: 37384871 DOI: 10.1097/iae.0000000000003880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
PURPOSE To evaluate microvascular and neuronal changes over 3 years in patients with Type 1/2 diabetes mellitus (DM1/DM2), good metabolic control, and no signs of diabetic retinopathy. METHODS In this prospective, longitudinal study, 20 DM1, 48 DM2, and 24 controls underwent macular optical coherence tomography and optical coherence tomography angiography at baseline and after 3 years. Following parameters were considered: thickness of the central macula, retinal nerve fiber layer, ganglion cell (GCL+/GCL++) complex; perfusion and vessel density and fractal dimension at the superficial and deep capillary plexuses; choriocapillaris flow deficits; and foveal avascular zone metrics. MATLAB and ImageJ were used for optical coherence tomography angiography scans analyses. RESULTS The mean HbA1c was 7.4 ± 0.8% in DM1 and 7.2 ± 0.8% in DM2 at baseline, with no change at 3 years. No eye developed diabetic retinopathy. In longitudinal analyses, perfusion density at superficial capillary plexuses ( P = 0.03) and foveal avascular zone area and perimeter ( P < 0.0001) significantly increased in DM2 compared with other groups. No longitudinal changes occurred in optical coherence tomography parameters. In comparisons within groups, DM2 had a significant thinning of GCL++ in the outer ring, decreased perfusion density at deep capillary plexuses and choriocapillaris flow deficits, and increase in foveal avascular zone perimeter and area in deep capillary plexuses; DM1 had an increase in foveal avascular zone perimeter in deep capillary plexuses ( P < 0.001 for all comparisons). CONCLUSION Longitudinal data showed significant microvascular retinal changes in DM2. No changes were detected in neuronal parameters and in DM1. Longer and larger studies are needed to confirm these preliminary data.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Caterina Toma
- Eye Clinic, University Hospital Maggiore della Carità, Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| | - Edoardo Villani
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marco Brambilla
- Department of Medical Physics, University Hospital Maggiore della Carità, Novara, Italy; and
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesco Leporati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Stefano De Cillà
- Eye Clinic, University Hospital Maggiore della Carità, Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| |
Collapse
|
6
|
Cigrovski Berkovic M, Strollo F. Semaglutide-eye-catching results. World J Diabetes 2023; 14:424-434. [PMID: 37122431 PMCID: PMC10130900 DOI: 10.4239/wjd.v14.i4.424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Semaglutide is a glucagon-like peptide-1 receptor agonist used either orally every day or subcutaneously once a week for the treatment of type 2 diabetes mellitus and, more recently, at higher doses, for the treatment of obesity. Both diseases are reaching epidemic proportions and often coexist, posing patients with a high risk for cardiovascular disease and death. Therefore, an agent such as semaglutide, which offers clinically significant weight loss and cardiovascular benefits, is essential and will be increasingly used in high-risk patients. However, during the SUSTAIN clinical trial program (Semaglutide Unabated Sustainability in treat-ment of type 2 diabetes), a safety issue concerning the progression and worsening of diabetic retinopathy emerged. The existing explanation so far mainly supports the role of the magnitude and speed of HbA1c reduction, a phenomenon also associated with insulin treatment and bariatric surgery. Whether and to which extent the effect is direct is still a matter of debate and an intriguing topic to investigate for suitable preventative and rehabilitative purposes. In this minireview, we will summarize the available data and suggest guidelines for a comprehensive semaglutide clinical utilization until new evidence becomes available.
Collapse
Affiliation(s)
| | - Felice Strollo
- Department of Endocrinology and Metabolism, IRCCS San Raffaele Pisana, Rome 00163, Italy
| |
Collapse
|
7
|
Violetta L, Kartasasmita AS, Supriyadi R, Rita C. Circulating Biomarkers to Predict Diabetic Retinopathy in Patients with Diabetic Kidney Disease. Vision (Basel) 2023; 7:vision7020034. [PMID: 37092467 PMCID: PMC10123608 DOI: 10.3390/vision7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The purpose of this review is to outline the currently available circulating biomarkers to predict diabetic retinopathy (DR) in patients with diabetic kidney disease (DKD). Studies have extensively reported the association between DR and DKD, suggesting the presence of common pathways of microangiopathy. The presence of other ocular complications including diabetic cataracts may hinder the detection of retinopathy, which may affect the visual outcome after surgery. Unlike DKD screening, the detection of DR requires complex, costly machines and trained technicians. Recognizing potential biological markers related to glycation and oxidative stress, inflammation and endothelial dysfunction, basement membrane thickening, angiogenesis, and thrombosis as well as novel molecular markers involved in the microangiopathy process may be useful as predictors of retinopathy and identify those at risk of DR progression, especially in cases where retinal visualization becomes a clinical challenge. Further investigations could assist in deciding which biomarkers possess the highest predictive power to predict retinopathy in clinical settings.
Collapse
Affiliation(s)
- Laurencia Violetta
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Indonesia Army Central Hospital, Jakarta 10410, Indonesia
| | | | - Rudi Supriyadi
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| | - Coriejati Rita
- Faculty of Medicine, Universitas Padjajaran, Bandung 40132, Indonesia
| |
Collapse
|
8
|
Hernández C, Simó-Servat O, Porta M, Grauslund J, Harding SP, Frydkjaer-Olsen U, García-Arumí J, Ribeiro L, Scanlon P, Cunha-Vaz J, Simó R. Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: results of the EUROCONDOR study. Acta Diabetol 2023; 60:837-844. [PMID: 36959506 DOI: 10.1007/s00592-023-02076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
AIMS Neurodegeneration and glial activation are primary events in the pathogenesis of diabetic retinopathy. Serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are biomarkers of underlying neuroinflammatory and neurodegenerative disease processes. The aim of the present study was to assess the usefulness of these serum biomarkers for the identification and monitoring of retinal neurodysfunction in subjects with type 2 diabetes. METHODS A case-control study was designed including 38 patients from the placebo arm of the EUROCONDOR clinical trial: 19 with and 19 without retinal neurodysfunction assessed by multifocal electroretinography. GFAP and NfL were measured by Simoa. RESULTS Serum levels of GFAP and NfL directly correlated with age (r = 0.37, p = 0.023 and r = 0.54, p < 0.001, respectively). In addition, a direct correlation between GFAP and NfL was observed (r = 0.495, p = 0.002). Serum levels of GFAP were significantly higher at baseline in those subjects in whom neurodysfunction progressed after the 2 years of follow-up (139.1 ± 52.5 pg/mL vs. 100.2 ± 54.6 pg/mL; p = 0.04). CONCLUSIONS GFAP could be a useful serum biomarker for retinal neurodysfunction. Monitoring retinal neurodysfunction using blood samples would be of benefit in clinical decision-making. However, further research is needed to validate this result as well as to establish the best cutoff values.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jakob Grauslund
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, and St. Paul's Eye Unit. Liverpool University Hospitals, Liverpool, UK
| | - Ulrik Frydkjaer-Olsen
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - José García-Arumí
- Department of Ophthalmology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Luísa Ribeiro
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Peter Scanlon
- Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, UK
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
9
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
10
|
Understanding Neurodegeneration from a Clinical and Therapeutic Perspective in Early Diabetic Retinopathy. Nutrients 2022; 14:nu14040792. [PMID: 35215442 PMCID: PMC8877033 DOI: 10.3390/nu14040792] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Recent evidence indicates that neurodegeneration is a critical element of diabetic retinopathy (DR) pathogenesis. The neuronal cells’ apoptosis contributes to microvascular impairment and blood–retinal barrier breakdown. Therefore, neurodegeneration represents an early intervention target to slow and prevent the development of microvascular alterations visible on clinical examination. Multimodal imaging features and functional assessment can permit the identification of neuronal damage in a subclinical stage before the recognition of DR signs. Clinical features of neurodegeneration are crucial in identifying patients at high risk of developing a vascular impairment and, thus, serve as outcome measures to understand the efficacy of supplementation. The optimal approach for targeting neurodegeneration contemplates the use of topical compounds that possibly act on different elements of the pathogenic cascade. To date, clinical trials available on humans tested three different topical agents, including brimonidine, somatostatin, and citicoline, with promising results.
Collapse
|
11
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|