1
|
Fésűs L, Kiss N, Farkas K, Plázár D, Pálla S, Navasiolava N, Róbert L, Wikonkál NM, Martin L, Medvecz M. Correlation of systemic involvement and presence of pathological skin calcification assessed by ex vivo nonlinear microscopy in Pseudoxanthoma elasticum. Arch Dermatol Res 2023; 315:1897-1908. [PMID: 36847829 PMCID: PMC10366029 DOI: 10.1007/s00403-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023]
Abstract
Pseudoxanthoma elasticum (PXE (OMIM 264800)) is an autosomal recessive connective tissue disorder mainly caused by mutations in the ABCC6 gene. PXE results in ectopic calcification primarily in the skin, eye and blood vessels that can lead to blindness, peripheral arterial disease and stroke. Previous studies found correlation between macroscopic skin involvement and severe ophthalmological and cardiovascular complications. This study aimed to investigate correlation between skin calcification and systemic involvement in PXE. Ex vivo nonlinear microscopy (NLM) imaging was performed on formalin fixed, deparaffinized, unstained skin sections to assess the extent of skin calcification. The area affected by calcification (CA) in the dermis and density of calcification (CD) was calculated. From CA and CD, calcification score (CS) was determined. The number of affected typical and nontypical skin sites were counted. Phenodex + scores were determined. The relationship between the ophthalmological, cerebro- and cardiovascular and other systemic complications and CA, CD and CS, respectively, and skin involvement were analyzed. Regression models were built for adjustment to age and sex. We found significant correlation of CA with the number of affected typical skin sites (r = 0.48), the Phenodex + score (r = 0.435), extent of vessel involvement (V-score) (r = 0.434) and disease duration (r = 0.48). CD correlated significantly with V-score (r = 0.539). CA was significantly higher in patients with more severe eye (p = 0.04) and vascular (p = 0.005) complications. We found significantly higher CD in patients with higher V-score (p = 0.018), and with internal carotid artery hypoplasia (p = 0.045). Significant correlation was found between higher CA and the presence of macula atrophy (β = - 0.44, p = 0.032) and acneiform skin changes (β = 0.40, p = 0.047). Based on our results, the assessment of skin calcification pattern with nonlinear microscopy in PXE may be useful for clinicians to identify PXE patients who develop severe systemic complications.
Collapse
Affiliation(s)
- Luca Fésűs
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Klára Farkas
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Dóra Plázár
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Sára Pálla
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Nastassia Navasiolava
- PXE National Reference Centre, Angers University Hospital, 4 Rue Larrey, 49100, Angers, France
| | - Lili Róbert
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Norbert M Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary
| | - Ludovic Martin
- PXE National Reference Centre, Angers University Hospital, 4 Rue Larrey, 49100, Angers, France
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, Budapest, 1085, Hungary.
| |
Collapse
|
2
|
Murcia Casas B, Carrillo Linares JL, Baquero Aranda I, Rioja Villodres J, Merino Bohórquez V, González Jiménez A, Rico Corral MÁ, Bosch R, Sánchez Chaparro MÁ, García Fernández M, Valdivielso P. Lansoprazole Increases Inorganic Pyrophosphate in Patients with Pseudoxanthoma Elasticum: A Double-Blind, Randomized, Placebo-Controlled Crossover Trial. Int J Mol Sci 2023; 24:ijms24054899. [PMID: 36902331 PMCID: PMC10003519 DOI: 10.3390/ijms24054899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is characterized by low levels of inorganic pyrophosphate (PPi) and a high activity of tissue-nonspecific alkaline phosphatase (TNAP). Lansoprazole is a partial inhibitor of TNAP. The aim was to investigate whether lansoprazole increases plasma PPi levels in subjects with PXE. We conducted a 2 × 2 randomized, double-blind, placebo-controlled crossover trial in patients with PXE. Patients were allocated 30 mg/day of lansoprazole or a placebo in two sequences of 8 weeks. The primary outcome was the differences in plasma PPi levels between the placebo and lansoprazole phases. 29 patients were included in the study. There were eight drop-outs due to the pandemic lockdown after the first visit and one due to gastric intolerance, so twenty patients completed the trial. A generalized linear mixed model was used to evaluate the effect of lansoprazole. Overall, lansoprazole increased plasma PPi levels from 0.34 ± 0.10 µM to 0.41 ± 0.16 µM (p = 0.0302), with no statistically significant changes in TNAP activity. There were no important adverse events. 30 mg/day of lansoprazole was able to significantly increase plasma PPi in patients with PXE; despite this, the study should be replicated with a large number of participants in a multicenter trial, with a clinical end point as the primary outcome.
Collapse
Affiliation(s)
- Belén Murcia Casas
- Internal Medicine Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Juan Luis Carrillo Linares
- Internal Medicine Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Isabel Baquero Aranda
- Ophtalmology Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - José Rioja Villodres
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | - Ricardo Bosch
- Dermatology Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Miguel Ángel Sánchez Chaparro
- Internal Medicine Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Department of Medicine and Dermatology, University of Málaga, 29016 Málaga, Spain
| | - María García Fernández
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Department of Phisiology, Universidad de Málaga, 29016 Málaga, Spain
| | - Pedro Valdivielso
- Internal Medicine Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, 29071 Málaga, Spain
- Department of Medicine and Dermatology, University of Málaga, 29016 Málaga, Spain
- Correspondence: ; Tel.: +34-952131615
| |
Collapse
|
3
|
NaF-PET Imaging of Atherosclerosis Burden. J Imaging 2023; 9:jimaging9020031. [PMID: 36826950 PMCID: PMC9966512 DOI: 10.3390/jimaging9020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The method of 18F-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) of atherosclerosis was introduced 12 years ago. This approach is particularly interesting because it demonstrates microcalcification as an incipient sign of atherosclerosis before the development of arterial wall macrocalcification detectable by CT. However, this method has not yet found its place in the clinical routine. The more exact association between NaF uptake and future arterial calcification is not fully understood, and it remains unclear to what extent NaF-PET may replace or significantly improve clinical cardiovascular risk scoring. The first 10 years of publications in the field were characterized by heterogeneity at multiple levels, and it is not clear how the method may contribute to triage and management of patients with atherosclerosis, including monitoring effects of anti-atherosclerosis intervention. The present review summarizes findings from the recent 2¾ years including the ability of NaF-PET imaging to assess disease progress and evaluate response to treatment. Despite valuable new information, pertinent questions remain unanswered, not least due to a pronounced lack of standardization within the field and of well-designed long-term studies illuminating the natural history of atherosclerosis and effects of intervention.
Collapse
|
4
|
Yang W, Zhong Z, Feng G, Wang Z. Advances in positron emission tomography tracers related to vascular calcification. Ann Nucl Med 2022; 36:787-797. [PMID: 35834116 DOI: 10.1007/s12149-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Microcalcification, a type of vascular calcification, increases the instability of plaque and easily leads to acute clinical events. Positron emission tomography (PET) is a new examination technology with significant advantages in identifying vascular calcification, especially microcalcification. The use of the 18F-NaF is undoubtedly the benchmark, and other PET tracers related to vascular calcification are also currently in development. Despite all this, a large number of studies are still needed to further clarify the specific mechanisms and characteristics. This review aimed at providing a summary of the application and progress of different PET tracers and also the future development direction.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhiqi Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
5
|
Lillo E, Gutierrez-Cardo A, Murcia-Casas B, Carrillo-Linares JL, Garcia-Argüello F, Chicharo de Freitas R, Baquero-Aranda I, Valdivielso P, García-Fernández M, Sánchez-Chaparro MÁ. Cutaneous and Vascular Deposits of 18F-NaF by PET/CT in the Follow-Up of Patients with Pseudoxanthoma Elasticum. J Clin Med 2021; 10:jcm10122588. [PMID: 34208205 PMCID: PMC8230828 DOI: 10.3390/jcm10122588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Active microcalcification of elastic fibers is a hallmark of pseudoxanthoma elasticum and it can be measured with the assessment of deposition of 18F-NaF using a PET/CT scan at the skin and vascular levels. It is not known whether this deposition changes over time in absence of specific therapy. We repeated in two years a PET/CT scan using 18F-NaF as a radiopharmaceutical in patients with the disease and compared the deposition at skin and vessel. Furthermore, calcium score values at the vessel wall were also assessed. Main results indicate in the vessel walls that calcification progressed in each patient; by contrast, the active microcalcification, measured and target-to-background ratio showed reduced active deposition. By contrast, at skin levels (neck and axillae) the uptake of the pharmaceutical remains unchanged. In conclusion, because calcification in the arterial wall is not specific for pseudoxanthoma elasticum condition, the measurement of the deposition of 18F-NaF in the neck might be potentially used as a surrogate marker in future trials for the disease.
Collapse
Affiliation(s)
- Eugenia Lillo
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
| | - Antonio Gutierrez-Cardo
- Nuclear Medicine Department, Regional Hospital, 29010 Malaga, Spain;
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
| | - Belén Murcia-Casas
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
| | - Juan Luis Carrillo-Linares
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
| | - Francisco Garcia-Argüello
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
| | - Reinaldo Chicharo de Freitas
- Molecular Imaging Unit, Centro de Investigaciones Médico Sanitarias (CIMES), Fundación General de la Universidad de Málaga, 29010 Málaga, Spain; (E.L.); (R.C.d.F.)
| | | | - Pedro Valdivielso
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
- Department of Medicine and Dermatology, University of Malaga, 29010 Malaga, Spain
- Correspondence: ; Tel.: +34-952131615; Fax: +34-952131511
| | - María García-Fernández
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Department of Human Physiology, University of Malaga, 29010 Malaga, Spain
| | - Miguel Ángel Sánchez-Chaparro
- Biomedical Research Institute of Malaga (IBIMA), 29010 Malaga, Spain; (J.L.C.-L.); (F.G.-A.); (M.G.-F.); (M.Á.S.-C.)
- Internal Medicine Unit, Virgen de la Victoria Hospital, 29010 Malaga, Spain;
- Department of Medicine and Dermatology, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
6
|
Bartstra JW, Risseeuw S, de Jong PA, van Os B, Kalsbeek L, Mol C, Baas AF, Verschuere S, Vanakker O, Florijn RJ, Hendrikse J, Mali W, Imhof S, Ossewaarde-van Norel J, van Leeuwen R, Spiering W. Genotype-phenotype correlation in pseudoxanthoma elasticum. Atherosclerosis 2021; 324:18-26. [PMID: 33812167 DOI: 10.1016/j.atherosclerosis.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Pseudoxanthoma elasticum (PXE) is caused by variants in the ABCC6 gene. It results in calcification in the skin, peripheral arteries and the eyes, but has considerable phenotypic variability. We investigated the association between the ABCC6 genotype and calcification and clinical phenotypes in these different organs. METHODS ABCC6 sequencing was performed in 289 PXE patients. Genotypes were grouped as two truncating, mixed, or two non-truncating variants. Arterial calcification mass was quantified on whole body, low dose CT scans; and peripheral arterial disease was measured with the ankle brachial index after treadmill test. The presence of pseudoxanthoma in the skin was systematically scored. Ophthalmological phenotypes were the length of angioid streaks as a measure of Bruchs membrane calcification, the presence of choroidal neovascularizations, severity of macular atrophy and visual acuity. Regression models were built to test the age and sex adjusted genotype-phenotype association. RESULTS 158 patients (median age 51 years) had two truncating variants, 96 (median age 54 years) a mixed genotype, 18 (median age 47 years) had two non-truncating variants. The mixed genotype was associated with lower peripheral (β: 0.39, 95%CI:-0.62;-0.17) and total (β: 0.28, 95%CI:-0.47;-0.10) arterial calcification mass scores, and lower prevalence of choroidal neovascularizations (OR: 0.41 95%CI:0.20; 0.83) compared to two truncating variants. No association with pseudoxanthomas was found. CONCLUSIONS PXE patients with a mixed genotype have less severe arterial and ophthalmological phenotypes than patients with two truncating variants in the ABCC6 gene. Research into environmental and genetic modifiers might provide further insights into the unexplained phenotypic variability.
Collapse
Affiliation(s)
- Jonas W Bartstra
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Bram van Os
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lianne Kalsbeek
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Chris Mol
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ralph J Florijn
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Willem Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Saskia Imhof
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
| |
Collapse
|
7
|
Omarjee L, Mention PJ, Janin A, Kauffenstein G, Le Pabic E, Meilhac O, Blanchard S, Navasiolava N, Leftheriotis G, Couturier O, Jeannin P, Lacoeuille F, Martin L. Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. J Clin Med 2020; 9:jcm9113448. [PMID: 33120982 PMCID: PMC7692997 DOI: 10.3390/jcm9113448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease characterized by elastic fiber fragmentation and ectopic calcification. There is growing evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. Since PXE has never been considered as an inflammatory condition, no incidence of chronic inflammation leading to calcification in PXE has been reported and should be investigated. In atherosclerosis and aortic stenosis, positron emission tomography combined with computed tomographic (PET-CT) imaging has demonstrated a correlation between inflammation and calcification. The purpose of this study was to assess skin/artery inflammation and calcification in PXE patients. Methods: 18F-FluroDeoxyGlucose (18F-FDG) and 18F-Sodium Fluoride (18F-NaF) PET-CT, CT-imaging and Pulse wave velocity (PWV) were used to determine skin/vascular inflammation, tissue calcification, arterial calcium score (CS) and stiffness, respectively. In addition, inorganic pyrophosphate, high-sensitive C-reactive protein and cytokines plasma levels were monitored. Results: In 23 PXE patients, assessment of inflammation revealed significant 18F-FDG uptake in diseased skin areas contrary to normal regions, and exclusively in the proximal aorta contrary to the popliteal arteries. There was no correlation between 18F-FDG uptake and PWV in the aortic wall. Assessment of calcification demonstrated significant 18F-NaF uptake in diseased skin regions and in the proximal aorta and femoral arteries. 18F-NaF wall uptake correlated with CS in the femoral arteries, and aortic wall PWV. Multivariate analysis indicated that aortic wall 18F-NaF uptake is associated with diastolic blood pressure. There was no significant correlation between 18F-FDG and 18F-NaF uptake in any of the artery walls. Conclusion: In the present cross-sectional study, inflammation and calcification were not correlated. PXE would appear to more closely resemble a chronic disease model of ectopic calcification than an inflammatory condition. To assess early ectopic calcification in PXE patients, 18F-NaF-PET-CT may be more relevant than CT imaging. It potentially constitutes a biomarker for disease-modifying anti-calcifying drug assessment in PXE.
Collapse
Affiliation(s)
- Loukman Omarjee
- Vascular Medicine Department, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, University of Rennes 1, 35033 Rennes, France
- Pseudoxanthoma Elasticum (PXE) Clinical and Research Vascular Center, CHU Rennes, 35033 Rennes, France
- NuMeCan Institute, Exogenous and Endogenous Stress and Pathological Responses in Hepato-Gastrointestinal Diseases (EXPRES) team, French national health and medical research (Inserm) U1241, University of Rennes 1, 35033 Rennes, France
- Correspondence: or ; Tel.: +33-(0)-62-749-7051
| | - Pierre-Jean Mention
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
| | - Anne Janin
- Sorbonne University Paris Nord, INSERM, U942, Cardiovascular Markers in Stressed Conditions, MASCOT, F- 93000 Bobigny, France;
| | - Gilles Kauffenstein
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
| | - Estelle Le Pabic
- CHU Rennes, French National Health and Medical Research (Inserm), Clinical Investigation Center (CIC) 1414, 35000 Rennes, France;
| | - Olivier Meilhac
- University of Reunion Island, INSERM, UMR 1188 Reunion, Indian Ocean diabetic atherothrombosis therapies (DéTROI), CHU de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Simon Blanchard
- Regional Center for Research in Cancerology and Immunology Nantes/Angers, CRCINA, Angers University, 49100 Angers, France; (S.B.); (P.J.)
- Immunology and Allergology Department, CHU Angers, Angers University, 49100 Angers, France
| | - Nastassia Navasiolava
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
- PXE Reference Center (MAGEC Nord), University Hospital of Angers, 49100 Angers, France
| | | | - Olivier Couturier
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
- GLIAD Team (Design and Application of Innovative Local Treatments in Glioblastoma), INSERM UMR 1232, CRCINA, CEDEX 9, 49933 Angers, France
| | - Pascale Jeannin
- Regional Center for Research in Cancerology and Immunology Nantes/Angers, CRCINA, Angers University, 49100 Angers, France; (S.B.); (P.J.)
- Immunology and Allergology Department, CHU Angers, Angers University, 49100 Angers, France
| | - Franck Lacoeuille
- Department of Nuclear Medicine, Angers University Hospital, 49100 Angers, France; (P.-J.M.); (O.C.); (F.L.)
- GLIAD Team (Design and Application of Innovative Local Treatments in Glioblastoma), INSERM UMR 1232, CRCINA, CEDEX 9, 49933 Angers, France
| | - Ludovic Martin
- MitoVasc Institute Mixed Research Unit: National Centre for Scientific Research, CNRS 6015, French National Health and Medical Research, Inserm U1083, Angers University, 49100 Angers, France; (G.K.); (N.N.); (L.M.)
- PXE Reference Center (MAGEC Nord), University Hospital of Angers, 49100 Angers, France
| |
Collapse
|