1
|
Eggenkemper L, Schlegtendal A, Maier C, Lücke T, Brinkmann F, Beckmann B, Tsikas D, Koerner-Rettberg C. Impaired Nitric Oxide Synthetase Activity in Primary Ciliary Dyskinesia-Data-Driven Hypothesis. J Clin Med 2023; 12:6010. [PMID: 37762950 PMCID: PMC10531778 DOI: 10.3390/jcm12186010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Low nasal nitric oxide (nNO) is a typical feature of Primary Ciliary Dyskinesia (PCD). nNO is part of the PCD diagnostic algorithm due to its discriminative power against other lung diseases, such as cystic fibrosis (CF). However, the underlying pathomechanisms are elusive. To better understand NO dysregulation in PCD, the L-arginine/NO (Arg/NO) pathway in patients with PCD (pwPCD) and CF (pwCF) and in healthy control (HC) subjects was investigated. In a prospective, controlled study, we measured in 24 pwPCD, 25 age-matched pwCF, and 14 HC the concentrations of the NO precursors Arg and homoarginine (hArg), the arginase metabolite ornithine (Orn), the NO inhibitor asymmetric dimethylarginine (ADMA), and the major NO metabolites (nitrate, nitrite) in sputum, plasma, and urine using validated methods. In comparison to HC, the sputum contents (in µmol/mg) of L-Arg (PCD 18.43 vs. CF 329.46 vs. HC 9.86, p < 0.001) and of ADMA (PCD 0.055 vs. CF 0.015 vs. HC 0.010, p < 0.001) were higher. In contrast, the sputum contents (in µmol/mg) of nitrate and nitrite were lower in PCD compared to HC (nitrite 4.54 vs. 9.26, p = 0.023; nitrate 12.86 vs. 40.33, p = 0.008), but higher in CF (nitrite 16.28, p < 0.001; nitrate 56.83, p = 0.002). The metabolite concentrations in urine and plasma were similar in all groups. The results of our study indicate that PCD, unlike CF, is associated with impaired NO synthesis in the lung, presumably due to mechano-chemical uncoupling.
Collapse
Affiliation(s)
- Lisa Eggenkemper
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Department of Internal Medicine and Gastroenterology, Christophorus-Kliniken Coesfeld, Teaching Hospital of University Münster, 48653 Coesfeld, Germany
| | - Anne Schlegtendal
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Christoph Maier
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Thomas Lücke
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Folke Brinkmann
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Section for Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Bibiana Beckmann
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (B.B.); (D.T.)
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (B.B.); (D.T.)
| | - Cordula Koerner-Rettberg
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Department of Pediatrics, Marien-Hospital Wesel, Teaching Hospital of University of Münster, 46483 Wesel, Germany
| |
Collapse
|
2
|
Hannemann J, Thorarinnsdottir EH, Amaral AFS, Schwedhelm E, Schmidt-Hutten L, Stang H, Benediktsdottir B, Gunnarsdóttir I, Gislason T, Böger R. Biomarkers of the L-Arginine/Dimethylarginine/Nitric Oxide Pathway in People with Chronic Airflow Obstruction and Obstructive Sleep Apnoea. J Clin Med 2023; 12:5230. [PMID: 37629272 PMCID: PMC10455103 DOI: 10.3390/jcm12165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are common chronic diseases that are associated with chronic and intermittent hypoxemia, respectively. Patients affected by the overlap of COPD and OSA have a particularly unfavourable prognosis. The L-arginine/nitric oxide (NO) pathway plays an important role in regulating pulmonary vascular function. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) interfere with NO production. METHODS We analysed the serum concentrations of ADMA, SDMA, L-arginine, L-citrulline, and L-ornithine in a large sample of the Icelandic general population together with chronic airflow obstruction (CAO), a key physiological marker of COPD that was assessed by post-bronchodilator spirometry (FEV1/FVC < LLN). OSA risk was determined by the multivariable apnoea prediction (MAP) index. RESULTS 713 individuals were analysed, of whom 78 (10.9%) showed CAO and 215 (30%) had MAP > 0.5. SDMA was significantly higher in individuals with CAO (0.518 [0.461-0.616] vs. 0.494 [0.441-0.565] µmol/L; p = 0.005), but ADMA was not. However, ADMA was significantly associated with decreasing FEV1 percent predicted among those with CAO (p = 0.002). ADMA was 0.50 (0.44-0.56) µmol/L in MAP ≤ 0.5 versus 0.52 (0.46-0.58) µmol/L in MAP > 0.5 (p = 0.008). SDMA was 0.49 (0.44-0.56) µmol/L versus 0.51 (0.46-0.60) µmol/L, respectively (p = 0.004). The highest values for ADMA and SDMA were observed in individuals with overlap of CAO and MAP > 0.5, which was accompanied by lower L-citrulline levels. CONCLUSIONS The plasma concentrations of ADMA and SDMA are elevated in COPD patients with concomitant intermittent hypoxaemia. This may account for impaired pulmonary NO production, enhanced pulmonary vasoconstriction, and disease progression.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany
| | - Elin H. Thorarinnsdottir
- Primary Health Care of the Capital Area, 103 Reykjavik, Iceland;
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
| | - André F. S. Amaral
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK;
- NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Heike Stang
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Bryndis Benediktsdottir
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
- Sleep Department, Landspitali University Hospital of Iceland, 105 Reykjavik, Iceland
| | - Ingibjörg Gunnarsdóttir
- Unit for Nutrition Research, Landspitali University Hospital & Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland;
| | - Thórarinn Gislason
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
- Sleep Department, Landspitali University Hospital of Iceland, 105 Reykjavik, Iceland
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Salem GEM, Azzam SM, Nasser MA, Malah TE, Abd El-Latief HM, Chavanich S, Khan RH, Anwar HM. Bacterial protease alleviate chronic liver fibrosis induced by thioacetamide through suppression of hepatic stellate cells consequently decrease its proliferative index. Int J Biol Macromol 2023; 239:124243. [PMID: 37011746 DOI: 10.1016/j.ijbiomac.2023.124243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
In chronic liver diseases, liver fibrosis occurs due to excessive extracellular matrix (ECM) protein accumulation. Approximately 2 million deaths occur yearly due to liver disease, while cirrhosis is the 11th most common cause of death. Therefore, newer compounds or biomolecules must be synthesized to treat chronic liver diseases. In this aspect, the present study focuses on the assessment of the anti-inflammatory and antioxidant impact of Bacterial Protease (BP) produced by a new mutant strain of bacteria (Bacillus cereus S6-3/UM90) and 4,4'-(2,5-dimethoxy-1,4-phenylene) bis (1-(3-ethoxy phenyl)-1H-1,2,3-triazole) (DPET) in the treatment of early stage of liver fibrosis induced by thioacetamide (TAA). Sixty male rats were divided into six groups, ten rats each as follows: (1) Control group, (2) BP group, (3) TAA group, (4) TAA-Silymarin (S) group, (5) TAA-BP group, and (6) TAA-DPET group. Liver fibrosis significantly elevated liver function ALT, AST, and ALP, as well as anti-inflammatory interleukin 6 (IL-6) and VEGF. The oxidative stress parameters (MDA, SOD, and NO) were significantly increased with a marked reduction in GSH. Expression of MAPK and MCP-1 was unregulated in the TAA group, with downregulation of Nrf2 was observed. TAA caused histopathological alterations associated with hepatic vacuolation and fibrosis, increasing collagen fibers and high immuno-expression of VEGF. On the other hand, treatment with BP successfully improved the severe effects of TAA on the liver and restored histological architecture. Our study concluded the protective potentials of BP for attenuating liver fibrosis and could be used as adjuvant therapy for treating hepatic fibrosis.
Collapse
|
4
|
Grasemann H, McDonald N, Yuan XZ, Dell S, Waters V, Ratjen F. Lower Airway Nitrogen Oxide Levels in Children with Primary Ciliary Dyskinesia Is Linked to Neutrophilic Inflammation. J Pediatr 2022; 244:230-233. [PMID: 35120987 DOI: 10.1016/j.jpeds.2022.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Treatment of primary ciliary dyskinesia pulmonary exacerbations resulted in an increase in sputum nitric oxide (NO) metabolites and decrease in neutrophilic inflammation. The association between the 2 suggests that neutrophilic inflammation contributes to airway NO deficiency in primary ciliary dyskinesia and that reducing inflammation may lead to improved airway NO homeostasis. TRIAL REGISTRY: ClinicalTrials.gov: NCT01155115.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| | - Nancy McDonald
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Xi Zhou Yuan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sharon Dell
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Valerie Waters
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Scott JA, Maarsingh H, Holguin F, Grasemann H. Arginine Therapy for Lung Diseases. Front Pharmacol 2021; 12:627503. [PMID: 33833679 PMCID: PMC8022134 DOI: 10.3389/fphar.2021.627503] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.
Collapse
Affiliation(s)
- Jeremy A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, United States
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
Local and Systemic Alterations of the L-Arginine/Nitric Oxide Pathway in Sputum, Blood, and Urine of Pediatric Cystic Fibrosis Patients and Effects of Antibiotic Treatment. J Clin Med 2020; 9:jcm9123802. [PMID: 33255369 PMCID: PMC7761143 DOI: 10.3390/jcm9123802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the L-arginine (Arg)/nitric oxide (NO) pathway have been reported in cystic fibrosis (CF; OMIM 219700) as the result of various factors including systemic and local inflammatory activity in the airways. The aim of the present study was to evaluate the Arg/NO metabolism in pediatric CF patients with special emphasis on lung impairment and antibiotic treatment. Seventy CF patients and 78 healthy controls were included in the study. CF patients (43% male, median age 11.8 years) showed moderately impaired lung functions (FEV1 90.5 ± 19.1% (mean ± SD); 21 (30%) had a chronic Pseudomonas aeruginosa (PSA) infection, and 24 (33%) had an acute exacerbation). Plasma, urinary, and sputum concentrations of the main Arg/NO metabolites, nitrate, nitrite, Arg, homoarginine (hArg), and asymmetric dimethylarginine (ADMA) were determined in pediatric CF patients and in healthy age-matched controls. Clinical parameters in CF patients included lung function and infection with PSA. Additionally, the Arg/NO pathway in sputum samples of five CF patients was analyzed before and after routine antibiotic therapy. CF patients with low fractionally exhaled NO (FENO) showed lower plasma Arg and nitrate concentrations. During acute exacerbation, sputum Arg and hArg levels were high and dropped after antibiotic treatment: Arg: pre-antibiotics: 4.14 nmol/25 mg sputum vs. post-antibiotics: 2.33 nmol/25 mg sputum, p = 0.008; hArg: pre-antibiotics: 0.042 nmol/25 mg sputum vs. post-antibiotics: 0.029 nmol/25 mg sputum, p = 0.035. The activated Arg/NO metabolism in stable CF patients may be a result of chronic inflammation. PSA infection did not play a major role regarding these differences. Exacerbation increased and antibiotic therapy decreased sputum Arg concentrations.
Collapse
|