1
|
Iacomino A, Rapa M, Gatta G, DI Grezia G, Cuccurullo V. Next-level precision medicine: why the theragnostic approach is the future. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:152-159. [PMID: 38860276 DOI: 10.23736/s1824-4785.24.03519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Theragnostics represents one of the most innovative fields of precision medicine with a huge potential in the field of oncology in the next years. The use of a pair of selective radiopharmaceuticals for cellular receptors, used for diagnostic and therapeutic purposes (PRRT), finds applications in the Neuroendocrine tumors and metastatic Castration-Resistant prostate cancer (mCRPC) thanks, respectively, to somatostatin receptor agonists and PSMA-based peptides. Further evolutions of theragnostics will be possible to the radioimmunoconjugates used both in the diagnostic (Immuno-PET) and in the therapeutic fields (radioimmunotherapy). It is evident that in the "omics-era," theragnostics could become a necessary method, not only in order to improve our knowledge of tumor biology, but also, to find more and more targeted therapies in a multidisciplinary context and in a tailor-based approach.
Collapse
Affiliation(s)
| | - Marco Rapa
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | | | - Vincenzo Cuccurullo
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Naples, Italy -
| |
Collapse
|
2
|
Kasprzak A, Geltz A. The State-of-the-Art Mechanisms and Antitumor Effects of Somatostatin in Colorectal Cancer: A Review. Biomedicines 2024; 12:578. [PMID: 38540191 PMCID: PMC10968376 DOI: 10.3390/biomedicines12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 01/03/2025] Open
Abstract
Somatostatin, a somatotropin release inhibiting factor (SST, SRIF), is a widely distributed multifunctional cyclic peptide and acts through a transmembrane G protein-coupled receptor (SST1-SST5). Over the past decades, research has begun to reveal the molecular mechanisms underlying the anticancer activity of this hormonal peptide. Among gastrointestinal tract (GIT) tumors, direct and indirect antitumor effects of SST have been documented best in gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and less well in non-endocrine cancers, including sporadic colorectal cancer (CRC). In the latter, the signaling pathways involved in the antitumor function of SST are primarily MAPK/ERK/AKT and Wnt/β-catenin. Direct (involving the MAPK pathway) and indirect (VEGF production) antiangiogenic effects of SST in CRC have also been described. The anti-inflammatory role of SST in CRC is emphasized, but detailed molecular mechanisms are still being explored. The role of SST in tumor genome/tumor microenvironment (TME)/host's gut microbiome interactions is only partially known. The results of SST analogues (SSAs)' treatment of sporadic CRC in monotherapy in vivo are not spectacular. The current review aims to present the state-of-the-art mechanisms and antitumor activity of endogenous SST and its synthetic analogues in CRC, with particular emphasis on sporadic CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland;
| | | |
Collapse
|
3
|
Fortunati E, Bonazzi N, Zanoni L, Fanti S, Ambrosini V. Molecular imaging Theranostics of Neuroendocrine Tumors. Semin Nucl Med 2023; 53:539-554. [PMID: 36623974 DOI: 10.1053/j.semnuclmed.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/08/2023]
Abstract
Neuroendocrine neoplasms (NEN) are rare and heterogeneous tumors, originating mostly from the gastro-entero-pancreatic (GEP) tract followed by the lungs. Multidisciplinary discussion is mandatory for optimal diagnostic and therapeutic management. Well-differentiated NEN (NET) present a high expression of somatostatin receptors (SSTR) and can be studied with [68Ga]-DOTA-peptides ([68Ga]Ga-DOTANOC, [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE) PET/CT to assess disease extension and the eligibility for peptide receptor radionuclide therapy (PRRT). SSTR-analogues labelled with 90Y or 177Lu have been used since mid-90s for NET therapy. PRRT is now considered an effective and safe treatment option for SSTR-expressing NET: following the approval of 177Lu-DOTATATE by FDA and EMA, PRRT is now part of the therapeutic algorithms of the main scientific societies. New strategies to improve PRRT efficacy and to reduce its toxicity are under evaluation (eg, personalization of treatment schemes, the selection of the most suitable patients, improvement of response assessment criteria, optimization of treatment sequencing, feasibility of PRRT-retreatment, combination of PRRT with other treatments options). Recently, several emerging radiopharmaceuticals showed encouraging results for both imaging and therapy (eg, SSTR-analogues labelled with 18F, SSTR-antagonists for both diagnosis and therapy, alpha-labelling for therapy, radiopharmaceuticals binding to new cellular targets). Aim of this review is to focus on current knowledge and to outline emerging perspectives for NEN's diagnosis and therapy.
Collapse
Affiliation(s)
- Emilia Fortunati
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Norma Bonazzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Nanabala R, Pillai MRA, Gopal B. Preparation of Patient Doses of [ 177Lu]Lu-DOTATATE and [ 177Lu]Lu-PSMA-617 with Carrier Added (CA) and No Carrier Added (NCA) 177Lu. Nucl Med Mol Imaging 2022; 56:313-322. [PMID: 36425271 PMCID: PMC9679127 DOI: 10.1007/s13139-022-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/10/2022] Open
Abstract
Purpose [177Lu]Lu-DOTATATE and [177Lu]Lu-PSMA-617 used for targeted radionuclide therapy are very often prepared in the hospital radiopharmacy. The preparation parameters vary depending upon the specific activity of the 177Lu used. The aim of this study was to develop optimized protocols to be used in the nuclear medicine department for the preparation of patient doses of the above radiopharmaceuticals. Method 177Lu (CA and NCA) were used for radiolabeling DOTATATE and PSMA-617. Parameters studied are 177Lu of different specific activity and different peptide concentrations and two different buffer systems. Paper and thin layer chromatography systems were used for estimating the radiochemical yield as well as radiochemical purity. Solid-phase extraction was used for the purification of the labeled tracers. Results [177Lu]Lu-DOTATATE was prepared with CA 177Lu (n = 13) and NCA177Lu (n = 6). Four batches each of [177Lu]Lu-PSMA-617 were prepared using CA and NCA 177Lu. Radiochemical yields > 80% and final product with less than < 1% radiochemical impurity could be obtained in all batches which were used for therapy. Conclusion Robust protocols for the preparation of clinical doses of [177Lu]Lu-DOTATATE and [177Lu]Lu-PSMA-617 were developed and used for the preparation of clinical doses. The quality of the SPECT images of both the tracers are consistent with the expected uptake in respective diseases.
Collapse
Affiliation(s)
- Raviteja Nanabala
- Molecular Cyclotrons Private Limited, Puthuvype, Ernakulam, Kerala 682508 India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, Tamil Nadu 632014 India
| | | | - Buvaneswari Gopal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
5
|
Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET Radiotracers for the Imaging of Neuroendocrine Neoplasms. Curr Treat Options Oncol 2022; 23:703-720. [PMID: 35325412 PMCID: PMC9001579 DOI: 10.1007/s11864-022-00967-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NEN) are a heterogeneous group of tumours derived from cells of neuroendocrine origin and can potentially arise everywhere in the human body. The diagnostic assessment of NEN can be performed using a variety of PET radiopharmaceuticals. Well-differentiated NEN (NET) present a high expression of SSTR (somatostatin receptors) and can therefore be studied with 68Ga-DOTA-peptides ([68Ga]Ga-DOTANOC, [68Ga]Ga-DOTATOC, [68Ga]Ga-DOTATATE). Current guidelines recommend the use of SSTR imaging to assess disease extension at staging/restaging, follow-up, assessment of response to therapy and selection of patients who may benefit from radionuclide therapy (PRRT). [18F]F-FDG is used for the assessment of high-grade tumours (high-grade G2, G3 and NEC) and in every case, there is one or more mismatched lesions between diagnostic CT (positive) and SSTR-PET/CT (negative). [18F]F-DOPA is currently used for the assessment of medullary thyroid carcinoma, neuroblastoma, primary pheochromocytoma and abdominal paraganglioma. In recent years, however, several new tracers were designed exploiting the many potential targets of the neuroendocrine cell and were employed in clinical trials for both imaging and therapy. Currently, the real-life clinical impact of these tracers is still mostly not known; however, the favourable biodistribution (e.g. [68Ga]Ga-FAPI, SSTR antagonists) and the possibility to use new theranostic pairs may provide novel diagnostic as well as therapeutic options (e.g. [68Ga]Ga-PSMA, [64Cu]Cu-SARTATE, [68Ga]Ga-CXCR4) for NEN patients.
Collapse
Affiliation(s)
- Emilia Fortunati
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Giulia Argalia
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Di Stasio GD, Cuccurullo V, Cascini GL, Grana CM. Tailored Molecular Imaging of Pheochromocytoma and Paraganglioma: Which Tracer and When. Neuroendocrinology 2022; 112:927-940. [PMID: 35051937 DOI: 10.1159/000522089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
Abstract
Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neoplasms that fall within the category of neuroendocrine tumors. In the last decade, their diagnostic algorithm has been modified to include the evaluation of molecular pathways, genotype, and biochemical phenotype, in order to correctly interpret anatomical and functional imaging results and tailor the best therapeutic choices to patients. More specifically, the identification of germline mutations has led to a three-way cluster classification: pseudo-hypoxic cluster, cluster of kinase receptor signaling and protein translation pathways, and cluster of Wnt-altered pathway. In this context, functional imaging gained a crucial role in the management of these patients in agreement with the ever-growing concept of personalized medicine. In this paper, we provide an overview of three specific molecular pathways targeted by positron-emitting tracers to image PCCs and PGLs: catecholamine metabolism, somatostatin receptors, and glucose uptake. Finally, we recommend different flow charts for use in the selection of tracers for specific clinical scenarios, based on sporadic/inherited tumor and known/unknown mutation status.
Collapse
Affiliation(s)
| | - Vincenzo Cuccurullo
- Nuclear Medicine Unit, Department of Precision Medicine, Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Chiara Maria Grana
- Nuclear Medicine Division, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
7
|
Somatostatin and Its Receptor System in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9111743. [PMID: 34829972 PMCID: PMC8615525 DOI: 10.3390/biomedicines9111743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Somatostatin (SST)/somatotropin release-inhibiting factor (SRIF) is a well-known neuropeptide, widely distributed in the central and peripheral nervous systems, that regulates the endocrine system and affects neurotransmission via interaction with five SST receptors (SST1-5). In the gastrointestinal tract, the main SST-producing cells include intestinal enteroendocrine cells (EECs) restricted to the mucosa, and neurons of the submucosal and myenteric plexuses. The action of the SRIF system is based on the inhibition of endocrine and exocrine secretion, as well as the proliferative responses of target cells. The SST1–5 share common signaling pathways, and are not only widely expressed on normal tissues, but also frequently overexpressed by several tumors, particularly neuroendocrine neoplasms (NENs). Furthermore, the SRIF system represents the only peptide/G protein-coupled receptor (GPCR) system with multiple approved clinical applications for the diagnosis and treatment of several NENs. The role of the SRIF system in the histogenesis of colorectal cancer (CRC) subtypes (e.g., adenocarcinoma and signet ring-cell carcinoma), as well as diagnosis and prognosis of mixed adenoneuroendocrine carcinoma (MANEC) and pure adenocarcinoma, is poorly understood. Moreover, the impact of the SRIF system signaling on CRC cell proliferation and its potential role in the progression of this cancer remains unknown. Therefore, this review summarizes the recent collective knowledge and understanding of the clinical significance of the SRIF system signaling in CRC, aiming to evaluate the potential role of its components in CRC histogenesis, diagnosis, and potential therapy.
Collapse
|
8
|
Stolniceanu CR, Moscalu M, Azoicai D, Tamba B, Volovat C, Grierosu I, Ionescu T, Jalloul W, Ghizdovat V, Gherasim R, Volovat S, Wang F, Fu J, Moscalu R, Matovic M, Stefanescu C. Improved Personalised Neuroendocrine Tumours' Diagnosis Predictive Power by New Receptor Somatostatin Image Processing Quantification. J Pers Med 2021; 11:jpm11101042. [PMID: 34683183 PMCID: PMC8539645 DOI: 10.3390/jpm11101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Although neuroendocrine tumours (NETs) are intensively studied, their diagnosis and consequently personalised therapy management is still puzzling due to their tumoral heterogeneity. In their theragnosis algorithm, receptor somatostatin scintigraphy takes the central place, the diagnosis receptor somatostatin analogue (RSA) choice depending on laboratory experience and accessibility. However, in all cases, the results depend decisively on correct radiotracer tumoral uptake quantification, where unfortunately there are still unrevealed clues and lack of standardization. We propose an improved method to quantify the biodistribution of gamma-emitting RSA, using tissular corrected uptake indices. We conducted a bi-centric retrospective study on 101 patients with different types of NETs. Three uptake indices obtained after applying new corrections to areas of interest drawn for the tumour and for three reference organs (liver, spleen and lung) were statistically analysed. For the corrected pathological uptake indices, the results showed a significant decrease in the error of estimating the occurrence of errors and an increase in the diagnostic predictive power for NETs, especially in the case of lung-referring corrected index. In conclusion, these results support the importance of corrected uptake indices use in the analysis of 99mTcRSA biodistribution for a better personalised diagnostic accuracy of NETs patients.
Collapse
Affiliation(s)
- Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Doina Azoicai
- Department of Epidemiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700454 Iasi, Romania;
| | - Constantin Volovat
- Department of Medicine III—Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (S.V.)
| | - Irena Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Teodor Ionescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Roxana Gherasim
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| | - Simona Volovat
- Department of Medicine III—Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (S.V.)
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (F.W.); (J.F.)
| | - Jingjing Fu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (F.W.); (J.F.)
| | - Roxana Moscalu
- Manchester Academic Health Science Centre, School of Medical Sciences Manchester, The University of Manchester, Manchester M139PT, UK;
| | - Milovan Matovic
- Clinical Center Kragujevac, Center for Nuclear Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.R.S.); (I.G.); (T.I.); (W.J.); (V.G.); (R.G.); (C.S.)
| |
Collapse
|
9
|
Artigas C, Mileva M, Flamen P, Karfis I. Targeted radionuclide therapy: an emerging field in solid tumours. Curr Opin Oncol 2021; 33:493-499. [PMID: 34183491 DOI: 10.1097/cco.0000000000000762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Targeted radionuclide therapy (TRNT) is characterized by systemic administration of radiolabelled drugs, targeting specific molecular alterations expressed on the tumour cells. Small molecules, labelled with β- or α- emitting radioisotopes, are used to deliver radiation directly to the tumour sites. Pretreatment imaging to visualize whole body biodistribution of the target, using the same drugs labelled with positron or γ-emitting radionuclides, completes the concept of theranostic. This review will briefly summarize the current clinical research findings and applications of TRNT in solid tumours, mostly focusing on neuroendocrine and prostate neoplasms. RECENT FINDINGS Peptide receptor radionuclide therapy is a major component in the management of gastroentropancreatic neuroendocrine tumours, with favourable safety profile, quality-of-life improvement and survival benefit. On the NETTER-1 study, it proved to be more effective than high-dose long-acting-release octreotide, leading to its regulatory approval. Prostate-specific membrane antigen (PSMA) is an excellent target for TRNT in prostate cancer. 177Lu-PSMA radioligand therapy demonstrated higher response rates in patients with metastatic castration resistant prostate cancer, when compared with second-line chemotherapy. New developments, including targeting of fibroblast activation proteins overexpressed in the tumour stroma, show promising preliminary results in the theranostic setting. SUMMARY Recent research has demonstrated and consolidated the use of TRNT against well established targets in neuroendocrine tumours and prostate cancer. The identification of new promising molecular targets for TRNT, will further expand the theranostic applications of radionuclides in the field of nuclear medicine.
Collapse
Affiliation(s)
- Carlos Artigas
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Pellat A, Cottereau AS, Palmieri LJ, Soyer P, Marchese U, Brezault C, Coriat R. Digestive Well-Differentiated Grade 3 Neuroendocrine Tumors: Current Management and Future Directions. Cancers (Basel) 2021; 13:2448. [PMID: 34070035 PMCID: PMC8158108 DOI: 10.3390/cancers13102448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Digestive well-differentiated grade 3 neuroendocrine tumors (NET G-3) have been clearly defined since the 2017 World Health Organization classification. They are still a rare category lacking specific data and standardized management. Their distinction from other types of neuroendocrine neoplasms (NEN) not only lies in morphology but also in genotype, aggressiveness, functional imaging uptake, and treatment response. Most of the available data comes from pancreatic series, which is the most frequent tumor site for this entity. In the non-metastatic setting, surgical resection is recommended, irrespective of grade and tumor site. For metastatic NET G-3, chemotherapy is the main first-line treatment with temozolomide-based regimen showing more efficacy than platinum-based regimen, especially when Ki-67 index <55%. Targeted therapies, such as sunitinib and everolimus, have also shown some positive therapeutic efficacy in small samples of patients. Functional imaging plays a key role for detection but also treatment selection. In the second or further-line setting, peptide receptor radionuclide therapy has shown promising response rates in high-grade NEN. Finally, immunotherapy is currently investigated as a new therapeutic approach with trials still ongoing. More data will come with future work now focusing on this specific subgroup. The aim of this review is to summarize the current data on digestive NET G-3 and explore future directions for their management.
Collapse
Affiliation(s)
- Anna Pellat
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France; (L.-J.P.); (C.B.); (R.C.)
| | - Anne Ségolène Cottereau
- Department of Nuclear Medicine, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France;
| | - Lola-Jade Palmieri
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France; (L.-J.P.); (C.B.); (R.C.)
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France;
| | - Ugo Marchese
- Department of Surgery, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France;
| | - Catherine Brezault
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France; (L.-J.P.); (C.B.); (R.C.)
| | - Romain Coriat
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Université de Paris, 75014 Paris, France; (L.-J.P.); (C.B.); (R.C.)
| |
Collapse
|
11
|
Beheshti M, Mottaghy FM. Special Issue: Emerging Technologies for Medical Imaging Diagnostics, Monitoring and Therapy of Cancers. J Clin Med 2021; 10:jcm10061327. [PMID: 33806986 PMCID: PMC8005165 DOI: 10.3390/jcm10061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular imaging and therapy play an increasingly important role in the field of "precision medicine" as an emergent prospect for management of the cancerous disease [...].
Collapse
Affiliation(s)
- Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-(0)5-7255-26602; Fax: +43-(0)5-7255-26699
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH University, 52074 Aachen, Germany;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| |
Collapse
|