1
|
Ahmed HS. BEYOND TRADITIONAL TOOLS: EXPLORING CONVOLUTIONAL NEURAL NETWORKS AS INNOVATIVE PROGNOSTIC MODELS IN PANCREATIC DUCTAL ADENOCARCINOMA. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23107. [PMID: 38511794 DOI: 10.1590/s0004-2803.24612023-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal form of cancer with limited prognostic accuracy using traditional factors. This has led to the exploration of innovative prognostic models, including convolutional neural networks (CNNs), in PDAC. CNNs, a type of artificial intelligence algorithm, have shown promise in various medical applications, including image analysis and pattern recognition. Their ability to extract complex features from medical images makes them suitable for improving prognostication in PDAC. However, implementing CNNs in clinical practice poses challenges, such as data availability and interpretability. Future research should focus on multi-center studies, integrating multiple data modalities, and combining CNN outputs with biomarker panels. Collaborative efforts and patient autonomy should be considered to ensure the ethical implementation of CNN-based prognostic models. Further validation and optimisation of CNN-based models are necessary to enhance their reliability and clinical utility in PDAC prognostication. BACKGROUND •Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited prognostic accuracy through traditional methods. BACKGROUND •Convolutional neural networks (CNNs) are being explored for prognostic models in PDAC. BACKGROUND •They can extract complex features from images, aiding PDAC prognostication. BACKGROUND •Further validation and optimization of CNN-based models are needed for better reliability and clinical utility in PDAC.
Collapse
|
2
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
3
|
Patel H, Zanos T, Hewitt DB. Deep Learning Applications in Pancreatic Cancer. Cancers (Basel) 2024; 16:436. [PMID: 38275877 PMCID: PMC10814475 DOI: 10.3390/cancers16020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hardik Patel
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - Theodoros Zanos
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - D. Brock Hewitt
- Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
4
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
5
|
S D, D S, P VK, K S. Enhancing pancreatic cancer classification through dynamic weighted ensemble: a game theory approach. Comput Methods Biomech Biomed Engin 2023:1-25. [PMID: 37982236 DOI: 10.1080/10255842.2023.2281277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.
Collapse
Affiliation(s)
- Dhanasekaran S
- Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India
| | - Silambarasan D
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Tamil Nadu, India
| | - Vivek Karthick P
- Department of Electronics and Communication Engineering, Sona College of Technology, Salem, Tamil Nadu, India
| | - Sudhakar K
- Department of Electronics and Communication Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, India
| |
Collapse
|
6
|
Demircioğlu A. Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics. Diagnostics (Basel) 2023; 13:3266. [PMID: 37892087 PMCID: PMC10606594 DOI: 10.3390/diagnostics13203266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In radiomics, utilizing features extracted from pretrained deep networks could result in models with a higher predictive performance than those relying on hand-crafted features. This study compared the predictive performance of models trained with either deep features, hand-crafted features, or a combination of these features in terms of the area under the receiver-operating characteristic curve (AUC) and other metrics. We trained models on ten radiological datasets using five feature selection methods and three classifiers. Our results indicate that models based on deep features did not show an improved AUC compared to those utilizing hand-crafted features (deep: AUC 0.775, hand-crafted: AUC 0.789; p = 0.28). Including morphological features alongside deep features led to overall improvements in prediction performance for all models (+0.02 gain in AUC; p < 0.001); however, the best model did not benefit from this (+0.003 gain in AUC; p = 0.57). Using all hand-crafted features in addition to the deep features resulted in a further overall improvement (+0.034 in AUC; p < 0.001), but only a minor improvement could be observed for the best model (deep: AUC 0.798, hand-crafted: AUC 0.789; p = 0.92). Furthermore, our results show that models based on deep features extracted from networks pretrained on medical data have no advantage in predictive performance over models relying on features extracted from networks pretrained on ImageNet data. Our study contributes a benchmarking analysis of models trained on hand-crafted and deep features from pretrained networks across multiple datasets. It also provides a comprehensive understanding of their applicability and limitations in radiomics. Our study shows, in conclusion, that models based on features extracted from pretrained deep networks do not outperform models trained on hand-crafted ones.
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
7
|
Ramaekers M, Viviers CGA, Janssen BV, Hellström TAE, Ewals L, van der Wulp K, Nederend J, Jacobs I, Pluyter JR, Mavroeidis D, van der Sommen F, Besselink MG, Luyer MDP. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J Clin Med 2023; 12:4209. [PMID: 37445243 DOI: 10.3390/jcm12134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Radiological imaging plays a crucial role in the detection and treatment of pancreatic ductal adenocarcinoma (PDAC). However, there are several challenges associated with the use of these techniques in daily clinical practice. Determination of the presence or absence of cancer using radiological imaging is difficult and requires specific expertise, especially after neoadjuvant therapy. Early detection and characterization of tumors would potentially increase the number of patients who are eligible for curative treatment. Over the last decades, artificial intelligence (AI)-based computer-aided detection (CAD) has rapidly evolved as a means for improving the radiological detection of cancer and the assessment of the extent of disease. Although the results of AI applications seem promising, widespread adoption in clinical practice has not taken place. This narrative review provides an overview of current radiological CAD systems in pancreatic cancer, highlights challenges that are pertinent to clinical practice, and discusses potential solutions for these challenges.
Collapse
Affiliation(s)
- Mark Ramaekers
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Christiaan G A Viviers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Boris V Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Terese A E Hellström
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Lotte Ewals
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Kasper van der Wulp
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Joost Nederend
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| | - Igor Jacobs
- Department of Hospital Services and Informatics, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Jon R Pluyter
- Department of Experience Design, Philips Design, 5656 AE Eindhoven, The Netherlands
| | - Dimitrios Mavroeidis
- Department of Data Science, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Misha D P Luyer
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands
| |
Collapse
|
8
|
Saillard C, Delecourt F, Schmauch B, Moindrot O, Svrcek M, Bardier-Dupas A, Emile JF, Ayadi M, Rebours V, de Mestier L, Hammel P, Neuzillet C, Bachet JB, Iovanna J, Dusetti N, Blum Y, Richard M, Kermezli Y, Paradis V, Zaslavskiy M, Courtiol P, Kamoun A, Nicolle R, Cros J. Pacpaint: a histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma. Nat Commun 2023; 14:3459. [PMID: 37311751 PMCID: PMC10264377 DOI: 10.1038/s41467-023-39026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Two tumor (Classical/Basal) and stroma (Inactive/active) subtypes of Pancreatic adenocarcinoma (PDAC) with prognostic and theragnostic implications have been described. These molecular subtypes were defined by RNAseq, a costly technique sensitive to sample quality and cellularity, not used in routine practice. To allow rapid PDAC molecular subtyping and study PDAC heterogeneity, we develop PACpAInt, a multi-step deep learning model. PACpAInt is trained on a multicentric cohort (n = 202) and validated on 4 independent cohorts including biopsies (surgical cohorts n = 148; 97; 126 / biopsy cohort n = 25), all with transcriptomic data (n = 598) to predict tumor tissue, tumor cells from stroma, and their transcriptomic molecular subtypes, either at the whole slide or tile level (112 µm squares). PACpAInt correctly predicts tumor subtypes at the whole slide level on surgical and biopsies specimens and independently predicts survival. PACpAInt highlights the presence of a minor aggressive Basal contingent that negatively impacts survival in 39% of RNA-defined classical cases. Tile-level analysis ( > 6 millions) redefines PDAC microheterogeneity showing codependencies in the distribution of tumor and stroma subtypes, and demonstrates that, in addition to the Classical and Basal tumors, there are Hybrid tumors that combine the latter subtypes, and Intermediate tumors that may represent a transition state during PDAC evolution.
Collapse
Affiliation(s)
| | - Flore Delecourt
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | | | | | - Magali Svrcek
- Dpt of Pathology, Saint-Antoine Hospital - Sorbonne Universités, Paris, France
| | | | - Jean Francois Emile
- Dpt of Pathology, Ambroise Paré Hospital - Université Saint Quentin en Yvelines, Paris, France
| | - Mira Ayadi
- Integragen, Genomic Services & Precision Medicine, Paris, France
| | - Vinciane Rebours
- Université Paris Cité, Dpt of Pancreatology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | - Louis de Mestier
- Université Paris Cité, Dpt of Pancreatology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | - Pascal Hammel
- Dpt of Medical oncology, Paul Brousse Hospital, Villejuif, France
| | | | - Jean Baptiste Bachet
- Dpt of Gastroenterology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Institut Paoli-Calmettes, Aix Marseille Université, CNRS UMR 7258, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, Institut Paoli-Calmettes, Aix Marseille Université, CNRS UMR 7258, Marseille, France
| | - Yuna Blum
- Institut Génétique et Développement de Rennes (IGDR), CNRS, Université de Rennes 1, UMR 6290, Rennes, France
| | - Magali Richard
- Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications Grenoble (TIMC-IMAG), CNRS, Université Grenoble-Alpes, UMR5525, Grenoble, France
| | - Yasmina Kermezli
- Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications Grenoble (TIMC-IMAG), CNRS, Université Grenoble-Alpes, UMR5525, Grenoble, France
| | - Valerie Paradis
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France
| | | | | | | | - Remy Nicolle
- Université Paris Cité, FHU MOSAIC, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
| | - Jerome Cros
- Université Paris Cité, Dpt of Pathology - FHU MOSAIC, Beaujon Hospital, INSERM U1149, Clichy, France.
| |
Collapse
|
9
|
Laqua FC, Woznicki P, Bley TA, Schöneck M, Rinneburger M, Weisthoff M, Schmidt M, Persigehl T, Iuga AI, Baeßler B. Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer. Cancers (Basel) 2023; 15:2850. [PMID: 37345187 PMCID: PMC10216416 DOI: 10.3390/cancers15102850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVES Positron emission tomography (PET) is currently considered the non-invasive reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo this diagnostic procedure due to high costs, limited availability, and additional radiation exposure. The purpose of this study was to predict the PET result from traditional contrast-enhanced computed tomography (CT) and to test different feature extraction strategies. METHODS In this study, 100 lung cancer patients underwent a contrast-enhanced 18F-fluorodeoxyglucose (FDG) PET/CT scan between August 2012 and December 2019. We trained machine learning models to predict FDG uptake in the subsequent PET scan. Model inputs were composed of (i) traditional "hand-crafted" radiomics features from the segmented lymph nodes, (ii) deep features derived from a pretrained EfficientNet-CNN, and (iii) a hybrid approach combining (i) and (ii). RESULTS In total, 2734 lymph nodes [555 (20.3%) PET-positive] from 100 patients [49% female; mean age 65, SD: 14] with lung cancer (60% adenocarcinoma, 21% plate epithelial carcinoma, 8% small-cell lung cancer) were included in this study. The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865-0.878), SBS 35.8 (34.2-37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). CONCLUSION Both traditional radiomics features and transfer-learning deep radiomics features provide relevant and complementary information for non-invasive N-staging in lung cancer.
Collapse
Affiliation(s)
- Fabian Christopher Laqua
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Piotr Woznicki
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Thorsten A. Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Mirjam Schöneck
- Institute of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Miriam Rinneburger
- Institute of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Mathilda Weisthoff
- Institute of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Matthias Schmidt
- Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thorsten Persigehl
- Institute of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Andra-Iza Iuga
- Institute of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Lu J, Jiang N, Zhang Y, Li D. A CT based radiomics nomogram for differentiation between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:979437. [PMID: 36937433 PMCID: PMC10014827 DOI: 10.3389/fonc.2023.979437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to develop and validate an CT-based radiomics nomogram for the preoperative differentiation of focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Methods 96 patients with focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma have been enrolled in the study (32 and 64 cases respectively). All cases have been confirmed by imaging, clinical follow-up and/or pathology. The imaging data were considered as: 70% training cohort and 30% test cohort. Pancreatic lesions have been manually delineated by two radiologists and image segmentation was performed to extract radiomic features from the CT images. Independent-sample T tests and LASSO regression were used for feature selection. The training cohort was classified using a variety of machine learning-based classifiers, and 5-fold cross-validation has been performed. The classification performance was evaluated using the test cohort. Multivariate logistic regression analysis was then used to develop a radiomics nomogram model, containing the CT findings and Rad-Score. Calibration curves have been plotted showing the agreement between the predicted and actual probabilities of the radiomics nomogram model. Different patients have been selected to test and evaluate the model prediction process. Finally, receiver operating characteristic curves and decision curves were plotted, and the radiomics nomogram model was compared with a single model to visually assess its diagnostic ability. Results A total of 158 radiomics features were extracted from each image. 7 features were selected to construct the radiomics model, then a variety of classifiers were used for classification and multinomial logistic regression (MLR) was selected to be the optimal classifier. Combining CT findings with radiomics model, a prediction model based on CT findings and radiomics was finally obtained. The nomogram model showed a good sensitivity and specificity with AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under the curve and decision curve analysis showed that the radiomics nomogram model may provide better diagnostic performance than the single model and achieve greater clinical net benefits than the CT finding model and radiomics signature model individually. Conclusions The CT image-based radiomics nomogram model can accurately distinguish between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma patients and provide additional clinical benefits.
Collapse
Affiliation(s)
- Jia Lu
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Nannan Jiang
- Department of Radiology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuqing Zhang
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Daowei Li
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
- *Correspondence: Daowei Li,
| |
Collapse
|
11
|
Mack S, Flattet Y, Bichard P, Frossard JL. Recent advances in the management of autoimmune pancreatitis in the era of artificial intelligence. World J Gastroenterol 2022; 28:6867-6874. [PMID: 36632320 PMCID: PMC9827582 DOI: 10.3748/wjg.v28.i48.6867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/26/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a type of immune-mediated pancreatitis subdivided into two subtypes, type 1 and type 2 AIP. Furthermore, type 1 AIP is considered to be the pancreatic manifestation of the immunoglobulin G4 (IgG4)-related disease. Nowadays, AIP is increasingly researched and recognized, although its diagnosis represents a challenge for several reasons: False positive ultrasound-guided cytological samples for a neoplastic process, difficult to interpret levels of IgG4, the absence of biological markers to diagnose type 2 AIP, and the challenging clinical identification of atypical forms. Furthermore, 60% and 78% of type 1 and type 2 AIP, respectively, are retrospectively diagnosed on surgical specimens of resected pancreas for suspected cancer. As distinguishing AIP from pancreatic ductal adenocarcinoma can be challenging, obtaining a definitive diagnosis can therefore prove difficult, since endoscopic ultrasound fine-needle aspiration or biopsy of the pancreas are suboptimal. This paper focuses on recent innovations in the management of AIP with regard to the use of artificial intelligence, new serum markers, and new therapeutic approaches, while it also outlines the current management recommendations. A better knowledge of AIP can reduce the recourse to surgery and avoid its overuse, although such an approach requires close collaboration between gastroenterologists, surgeons and radiologists. Better knowledge on AIP and IgG4-related disease remains necessary to diagnose and manage patients.
Collapse
Affiliation(s)
- Sahar Mack
- Division of Gastroenterology, Department of Medical Specialties, University Hospital of Geneva, Geneva 1205, Switzerland
| | - Yves Flattet
- Division of Gastroenterology, Department of Medical Specialties, University Hospital of Geneva, Geneva 1205, Switzerland
| | - Philippe Bichard
- Division of Gastroenterology, Department of Medical Specialties, University Hospital of Geneva, Geneva 1205, Switzerland
| | - Jean Louis Frossard
- Division of Gastroenterology, Department of Medical Specialties, University Hospital of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
12
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
13
|
Wei W, Jia G, Wu Z, Wang T, Wang H, Wei K, Cheng C, Liu Z, Zuo C. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images. Jpn J Radiol 2022; 41:417-427. [PMID: 36409398 PMCID: PMC9676903 DOI: 10.1007/s11604-022-01363-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To explore a multidomain fusion model of radiomics and deep learning features based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images to distinguish pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP), which could effectively improve the accuracy of diseases diagnosis. MATERIALS AND METHODS This retrospective study included 48 patients with AIP (mean age, 65 ± 12.0 years; range, 37-90 years) and 64 patients with PDAC patients (mean age, 66 ± 11.3 years; range, 32-88 years). Three different methods were discussed to identify PDAC and AIP based on 18F-FDG PET/CT images, including the radiomics model (RAD_model), the deep learning model (DL_model), and the multidomain fusion model (MF_model). We also compared the classification results of PET/CT, PET, and CT images in these three models. In addition, we explored the attributes of deep learning abstract features by analyzing the correlation between radiomics and deep learning features. Five-fold cross-validation was used to calculate receiver operating characteristic (ROC), area under the roc curve (AUC), accuracy (Acc), sensitivity (Sen), and specificity (Spe) to quantitatively evaluate the performance of different classification models. RESULTS The experimental results showed that the multidomain fusion model had the best comprehensive performance compared with radiomics and deep learning models, and the AUC, accuracy, sensitivity, specificity were 96.4% (95% CI 95.4-97.3%), 90.1% (95% CI 88.7-91.5%), 87.5% (95% CI 84.3-90.6%), and 93.0% (95% CI 90.3-95.6%), respectively. And our study proved that the multimodal features of PET/CT were superior to using either PET or CT features alone. First-order features of radiomics provided valuable complementary information for the deep learning model. CONCLUSION The preliminary results of this paper demonstrated that our proposed multidomain fusion model fully exploits the value of radiomics and deep learning features based on 18F-FDG PET/CT images, which provided competitive accuracy for the discrimination of PDAC and AIP.
Collapse
Affiliation(s)
- Wenting Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Guorong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhongyi Wu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Heng Wang
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Kezhen Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhaobang Liu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| |
Collapse
|
14
|
Anai K, Hayashida Y, Ueda I, Hozuki E, Yoshimatsu Y, Tsukamoto J, Hamamura T, Onari N, Aoki T, Korogi Y. The effect of CT texture-based analysis using machine learning approaches on radiologists' performance in differentiating focal-type autoimmune pancreatitis and pancreatic duct carcinoma. Jpn J Radiol 2022; 40:1156-1165. [PMID: 35727458 PMCID: PMC9616757 DOI: 10.1007/s11604-022-01298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To develop a support vector machine (SVM) classifier using CT texture-based analysis in differentiating focal-type autoimmune pancreatitis (AIP) and pancreatic duct carcinoma (PD), and to assess the radiologists' diagnostic performance with or without SVM. MATERIALS AND METHODS This retrospective study included 50 patients (20 patients with focal-type AIP and 30 patients with PD) who underwent dynamic contrast-enhanced CT. Sixty-two CT texture-based features were extracted from 2D images of the arterial and portal phase CTs. We conducted data compression and feature selections using principal component analysis (PCA) and produced the SVM classifier. Four readers participated in this observer performance study and the statistical significance of differences with and without the SVM was assessed by receiver operating characteristic (ROC) analysis. RESULTS The SVM performance indicated a high performance in differentiating focal-type AIP and PD (AUC = 0.920). The AUC for all 4 readers increased significantly from 0.827 to 0.911 when using the SVM outputs (p = 0.010). The AUC for inexperienced readers increased significantly from 0.781 to 0.905 when using the SVM outputs (p = 0.310). The AUC for experienced readers increased from 0.875 to 0.912 when using the SVM outputs, however, there was no significant difference (p = 0.018). CONCLUSION The use of SVM classifier using CT texture-based features improved the diagnostic performance for differentiating focal-type AIP and PD on CT.
Collapse
Affiliation(s)
- Kenta Anai
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Yoshiko Hayashida
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Eri Hozuki
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Yuuta Yoshimatsu
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Jun Tsukamoto
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Toshihiko Hamamura
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Norihiro Onari
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Takatoshi Aoki
- Department of Radiology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Yukunori Korogi
- Department of Radiology, Kyushu Rosai Hospital, Moji Medical Center, 3-1, Higashiminatomachi, Moji-ku, Kitakyushu, Fukuoka 801-8502 Japan
| |
Collapse
|
15
|
Lee J, Liu C, Kim J, Chen Z, Sun Y, Rogers JR, Chung WK, Weng C. Deep learning for rare disease: A scoping review. J Biomed Inform 2022; 135:104227. [DOI: 10.1016/j.jbi.2022.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
16
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Liao H, Yang J, Li Y, Liang H, Ye J, Liu Y. One 3D VOI-based deep learning radiomics strategy, clinical model and radiologists for predicting lymph node metastases in pancreatic ductal adenocarcinoma based on multiphasic contrast-enhanced computer tomography. Front Oncol 2022; 12:990156. [PMID: 36158647 PMCID: PMC9500296 DOI: 10.3389/fonc.2022.990156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We designed to construct one 3D VOI-based deep learning radiomics strategy for identifying lymph node metastases (LNM) in pancreatic ductal adenocarcinoma on the basis of multiphasic contrast-enhanced computer tomography and to assist clinical decision-making. Methods This retrospective research enrolled 139 PDAC patients undergoing pre-operative arterial phase and venous phase scanning examination between 2015 and 2021. A primary group (training group and validation group) and an independent test group were divided. The DLR strategy included three sections. (1) Residual network three dimensional-18 (Resnet 3D-18) architecture was constructed for deep learning feature extraction. (2) Least absolute shrinkage and selection operator model was used for feature selection. (3) Fully connected network served as the classifier. The DLR strategy was applied for constructing different 3D CNN models using 5-fold cross-validation. Radiomics scores (Rad score) were calculated for distinguishing the statistical difference between negative and positive lymph nodes. A clinical model was constructed by combining significantly different clinical variables using univariate and multivariable logistic regression. The manifestation of two radiologists was detected for comparing with computer-developed models. Receiver operating characteristic curves, the area under the curve, accuracy, precision, recall, and F1 score were used for evaluating model performance. Results A total of 45, 49, and 59 deep learning features were selected via LASSO model. No matter in which 3D CNN model, Rad score demonstrated the deep learning features were significantly different between non-LNM and LNM groups. The AP+VP DLR model yielded the best performance in predicting status of lymph node in PDAC with an AUC of 0.995 (95% CI:0.989-1.000) in training group; an AUC of 0.940 (95% CI:0.910-0.971) in validation group; and an AUC of 0.949 (95% CI:0.914-0.984) in test group. The clinical model enrolled the histological grade, CA19-9 level and CT-reported tumor size. The AP+VP DLR model outperformed AP DLR model, VP DLR model, clinical model, and two radiologists. Conclusions The AP+VP DLR model based on Resnet 3D-18 demonstrated excellent ability for identifying LNM in PDAC, which could act as a non-invasive and accurate guide for clinical therapeutic strategies. This 3D CNN model combined with 3D tumor segmentation technology is labor-saving, promising, and effective.
Collapse
Affiliation(s)
- Hongfan Liao
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Junjun Yang
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyong Ye
- Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, Chongqing University, Chongqing, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- *Correspondence: Yanbing Liu,
| |
Collapse
|
18
|
Barat M, Marchese U, Pellat A, Dohan A, Coriat R, Hoeffel C, Fishman EK, Cassinotto C, Chu L, Soyer P. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Can Assoc Radiol J 2022; 74:351-361. [PMID: 36065572 DOI: 10.1177/08465371221124927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Ugo Marchese
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Digestive, Hepatobiliary and Pancreatic Surgery, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | | | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, 27037University of Montpellier, Saint-Éloi Hospital, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| |
Collapse
|
19
|
A systematic review of radiomics in pancreatitis: applying the evidence level rating tool for promoting clinical transferability. Insights Imaging 2022; 13:139. [PMID: 35986798 PMCID: PMC9391628 DOI: 10.1186/s13244-022-01279-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the evidence level rating tool. Results Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score (RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample size. Conclusions More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and necessary for bringing the field of radiomics from preclinical research area to clinical stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01279-4.
Collapse
|
20
|
Anta JA, Martínez-Ballestero I, Eiroa D, García J, Rodríguez-Comas J. Artificial intelligence for the detection of pancreatic lesions. Int J Comput Assist Radiol Surg 2022; 17:1855-1865. [PMID: 35951286 DOI: 10.1007/s11548-022-02706-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Pancreatic cancer is one of the most lethal neoplasms among common cancers worldwide, and PCLs are well-known precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic cancer and pancreatic cystic lesions. METHODS We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs). RESULTS We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed to predict the presence of high-grade dysplasia or cancer. CONCLUSION AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists' tasks. However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implementation in clinical practice.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Gastroenterology, University Hospital, 12 Octubre. Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Iván Martínez-Ballestero
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Daniel Eiroa
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Javier García
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Júlia Rodríguez-Comas
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.
| |
Collapse
|
21
|
de la Pinta C. Radiomics in pancreatic cancer for oncologist: Present and future. Hepatobiliary Pancreat Dis Int 2022; 21:356-361. [PMID: 34961674 DOI: 10.1016/j.hbpd.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Radiomics is changing the world of medicine and more specifically the world of oncology. Early diagnosis and treatment improve the prognosis of patients with cancer. After treatment, the evaluation of the response will determine future treatments. In oncology, every change in treatment means a loss of therapeutic options and this is key in pancreatic cancer. Radiomics has been developed in oncology in the early diagnosis and differential diagnosis of benign and malignant lesions, in the evaluation of response, in the prediction of possible side effects, marking the risk of recurrence, survival and prognosis of the disease. Some studies have validated its use to differentiate normal tissues from tumor tissues with high sensitivity and specificity, and to differentiate cystic lesions and pancreatic neuroendocrine tumor grades with texture parameters. In addition, these parameters have been related to survival in patients with pancreatic cancer and to response to radiotherapy and chemotherapy. This review aimed to establish the current status of the use of radiomics in pancreatic cancer and future perspectives.
Collapse
Affiliation(s)
- Carolina de la Pinta
- Radiation Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain.
| |
Collapse
|
22
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
23
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
24
|
Wang X, Sun Z, Xue H, Qu T, Cheng S, Li J, Li Y, Mao L, Li X, Zhu L, Li X, Zhang L, Jin Z, Yu Y. A deep learning algorithm to improve readers' interpretation and speed of pancreatic cystic lesions on dual-phase enhanced CT. Abdom Radiol (NY) 2022; 47:2135-2147. [PMID: 35344077 DOI: 10.1007/s00261-022-03479-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. MATERIALS AND METHODS Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared. RESULTS The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers' diagnostic time was shortened (all p < 0.05). CONCLUSION The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist's interpretation and speed of PCLs on CT.
Collapse
Affiliation(s)
- Xiheng Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Zhaoyong Sun
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Taiping Qu
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Juan Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yatong Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Li Mao
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Xiuli Li
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Liang Zhu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xiao Li
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Longjing Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Yizhou Yu
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| |
Collapse
|
25
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
26
|
Casà C, Piras A, D’Aviero A, Preziosi F, Mariani S, Cusumano D, Romano A, Boskoski I, Lenkowicz J, Dinapoli N, Cellini F, Gambacorta MA, Valentini V, Mattiucci GC, Boldrini L. The impact of radiomics in diagnosis and staging of pancreatic cancer. Ther Adv Gastrointest Endosc 2022; 15:26317745221081596. [PMID: 35342883 PMCID: PMC8943316 DOI: 10.1177/26317745221081596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) is one of the most aggressive tumours, and better risk stratification among patients is required to provide tailored treatment. The meaning of radiomics and texture analysis as predictive techniques are not already systematically assessed. The aim of this study is to assess the role of radiomics in PC. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to assess the role of radiomics in PC. The search strategy was 'radiomics [All Fields] AND ("pancreas" [MeSH Terms] OR "pancreas" [All Fields] OR "pancreatic" [All Fields])' and only original articles referred to PC in humans in the English language were considered. RESULTS A total of 123 studies and 183 studies were obtained using the mentioned search strategy on PubMed and Embase, respectively. After the complete selection process, a total of 56 papers were considered eligible for the analysis of the results. Radiomics methods were applied in PC for assessment technical feasibility and reproducibility aspects analysis, risk stratification, biologic or genomic status prediction and treatment response prediction. DISCUSSION Radiomics seems to be a promising approach to evaluate PC from diagnosis to treatment response prediction. Further and larger studies are required to confirm the role and allowed to include radiomics parameter in a comprehensive decision support system.
Collapse
Affiliation(s)
- Calogero Casà
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Francesco Preziosi
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Mariani
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ivo Boskoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Jacopo Lenkowicz
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Dinapoli
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Cellini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Carlo Mattiucci
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
27
|
Barat M, Chassagnon G, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Soyer P. Artificial intelligence: a critical review of current applications in pancreatic imaging. Jpn J Radiol 2021; 39:514-523. [PMID: 33550513 DOI: 10.1007/s11604-021-01098-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The applications of artificial intelligence (AI), including machine learning and deep learning, in the field of pancreatic disease imaging are rapidly expanding. AI can be used for the detection of pancreatic ductal adenocarcinoma and other pancreatic tumors but also for pancreatic lesion characterization. In this review, the basic of radiomics, recent developments and current results of AI in the field of pancreatic tumors are presented. Limitations and future perspectives of AI are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 27 Rue du Faubourg Saint-Jacques, Paris, France
- Université de Paris, Descartes-Paris 5, 75006, Paris, France
| | - Guillaume Chassagnon
- Department of Radiology, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 27 Rue du Faubourg Saint-Jacques, Paris, France
- Université de Paris, Descartes-Paris 5, 75006, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 27 Rue du Faubourg Saint-Jacques, Paris, France
- Université de Paris, Descartes-Paris 5, 75006, Paris, France
| | - Sébastien Gaujoux
- Université de Paris, Descartes-Paris 5, 75006, Paris, France
- Department of Abdominal Surgery, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Romain Coriat
- Université de Paris, Descartes-Paris 5, 75006, Paris, France
- Department of Gastroenterology, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Robert Debré Hospital, 51092, Reims, France
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, 34000, Montpellier, France
| | - Philippe Soyer
- Department of Radiology, Hopital Cochin, Assistance Publique-Hopitaux de Paris, 27 Rue du Faubourg Saint-Jacques, Paris, France.
- Université de Paris, Descartes-Paris 5, 75006, Paris, France.
| |
Collapse
|
28
|
Recognition of Handwritten Arabic and Hindi Numerals Using Convolutional Neural Networks. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arabic and Hindi handwritten numeral detection and classification is one of the most popular fields in the automation research. It has many applications in different fields. Automatic detection and automatic classification of handwritten numerals have persistently received attention from researchers around the world due to the robotic revolution in the past decades. Therefore, many great efforts and contributions have been made to provide highly accurate detection and classification methodologies with high performance. In this paper, we propose a two-stage methodology for the detection and classification of Arabic and Hindi handwritten numerals. The classification was based on convolutional neural networks (CNNs). The first stage of the methodology is the detection of the input numeral to be either Arabic or Hindi. The second stage is to detect the input numeral according to the language it came from. The simulation results show very high performance; the recognition rate was close to 100%.
Collapse
|