1
|
Ananthaswamy D, Funes K, Borges T, Roques S, Fassnacht N, Jamal SE, Checchi PM, Wei-sy Lee T. NuRD chromatin remodeling is required to repair exogenous DSBs in the Caenorhabditis elegans germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613027. [PMID: 39314477 PMCID: PMC11419128 DOI: 10.1101/2024.09.14.613027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Organisms rely on coordinated networks of DNA repair pathways to protect genomes against toxic double-strand breaks (DSBs), particularly in germ cells. All repair mechanisms must successfully negotiate the local chromatin environment in order to access DNA. For example, nucleosomes can be repositioned by the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex. In Caenorhabditis elegans, NuRD functions in the germline to repair DSBs - the loss of NuRD's ATPase subunit, LET-418/CHD4, prevents DSB resolution and therefore reduces fertility. In this study, we challenge germlines with exogenous DNA damage to better understand NuRD's role in repairing DSBs. We find that let-418 mutants are hypersensitive to cisplatin and hydroxyurea: exposure to either mutagen impedes DSB repair, generates aneuploid oocytes, and severely reduces fertility and embryonic survival. These defects resemble those seen when the Fanconi anemia (FA) DNA repair pathway is compromised, and we find that LET-418's activity is epistatic to that of the FA component FCD-2/FANCD2. We propose a model in which NuRD is recruited to the site of DNA lesions to remodel chromatin and allow access for FA pathway components. Together, these results implicate NuRD in the repair of both endogenous DSBs and exogenous DNA lesions to preserve genome integrity in developing germ cells.
Collapse
Affiliation(s)
- Deepshikha Ananthaswamy
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Kelin Funes
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Thiago Borges
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Scott Roques
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Nina Fassnacht
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Sereen El Jamal
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Paula M. Checchi
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Teresa Wei-sy Lee
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| |
Collapse
|
2
|
Golden NL, Foley MK, Kim Guisbert KS, Guisbert E. Divergent regulatory roles of NuRD chromatin remodeling complex subunits GATAD2 and CHD4 in Caenorhabditis elegans. Genetics 2022; 221:iyac046. [PMID: 35323946 PMCID: PMC9071545 DOI: 10.1093/genetics/iyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
During proteotoxic stress, a pathway known as the heat shock response is induced to maintain protein-folding homeostasis or proteostasis. Previously, we identified the Caenorhabditis elegans GATAD2 ortholog, dcp-66, as a novel regulator of the heat shock response. Here, we extend these findings to show that dcp-66 positively regulates the heat shock response at the cellular, molecular, and organismal levels. As GATAD2 is a subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, we examined other nucleosome remodeling and deacetylase subunits and found that the let-418 (CHD4) nucleosome repositioning core also regulates the heat shock response. However, let-418 acts as a negative regulator of the heat shock response, in contrast to positive regulation by dcp-66. The divergent effects of these two nucleosome remodeling and deacetylase subunits extend to the regulation of other stress responses including oxidative, genotoxic, and endoplasmic reticulum stress. Furthermore, a transcriptomic approach reveals additional divergently regulated pathways, including innate immunity and embryogenesis. Taken together, this work establishes new insights into the role of nucleosome remodeling and deacetylase subunits in organismal physiology. We incorporate these findings into a molecular model whereby different mechanisms of recruitment to promoters can result in the divergent effects of nucleosome remodeling and deacetylase subunits.
Collapse
Affiliation(s)
- Nicole L Golden
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Michaela K Foley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
3
|
Kubota Y, Ohnishi Y, Hamasaki T, Yasui G, Ota N, Kitagawa H, Esaki A, Fahmi M, Ito M. Overlapping and non-overlapping roles of the class-I histone deacetylase-1 corepressors LET-418, SIN-3, and SPR-1 in Caenorhabditis elegans embryonic development. Genes Genomics 2021; 43:553-565. [PMID: 33740234 PMCID: PMC8110489 DOI: 10.1007/s13258-021-01076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tasuku Hamasaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Gen Yasui
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsumi Ota
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiromu Kitagawa
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Arashi Esaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
4
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
5
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
6
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|