1
|
Ladagu A, Olopade F, Chazot P, Elufioye T, Luong T, Fuller M, Halprin E, Mckay J, Ates-Alagoz Z, Gilbert T, Adejare A, Olopade J. ZA-II-05, a novel NMDA-receptor antagonist reverses vanadium-induced neurotoxicity in Caenorhabditis elegans (C. elegans). BMC Neurosci 2024; 25:56. [PMID: 39468459 PMCID: PMC11520585 DOI: 10.1186/s12868-024-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise. Using Caenorhabditis elegans as a model, we evaluated a novel compound with a mixed NMDA glutamate receptor-dopamine transporter pharmacology, ZA-II-05 and found it effectively ameliorated vanadium-induced neurotoxicity, suggesting a potential neuroprotective role. METHODS Synchronized young adult worms were assigned to four different experimental groups; Controls; 100 mM of Vanadium; Vanadium and 1 mg/ml ZA-II-05; and ZA-II-05 alone. These were examined with different markers, including DAPI, MitoTracker Green and MitoSox stains for assessment of nuclei and mitochondrial density and oxidative stress, respectively. RESULTS Exposure to vanadium in C. elegans resulted in decreased nuclear presence and reduction in mitochondrial content were also analyzed based on fluorescence in the pharyngeal region, signifying an increase in the production of reactive oxygen species, while vanadium co-treatment with ZA-II-05 caused a significant increase in nuclear presence and mitochondrial content. DISCUSSION Treatment with ZA-II-05 significantly preserved cellular integrity, exhibiting a reversal of the detrimental effects induced by vanadium by modulating and preserving the normal function of chemosensory neurons and downstream signaling pathways. This study provides valuable insights into the mechanisms of vanadium-induced neurotoxicity and offers perspectives for developing therapeutic interventions for neurodegenerative diseases related to environmental toxins.
Collapse
Affiliation(s)
- Amany Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul Chazot
- Department of Biosciences, Durham University, County Durham, DH1 3LE, UK
| | - Taiwo Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Ethan Halprin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jessica Mckay
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Taidinda Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Kwon Y, Kim J, Son YB, Lee SA, Choi SS, Cho Y. Advanced Neural Functional Imaging in C. elegans Using Lab-on-a-Chip Technology. MICROMACHINES 2024; 15:1027. [PMID: 39203678 PMCID: PMC11356251 DOI: 10.3390/mi15081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
The ability to perceive and adapt to environmental changes is crucial for the survival of all organisms. Neural functional imaging, particularly in model organisms, such as Caenorhabditis elegans, provides valuable insights into how animals sense and process external cues through their nervous systems. Because of its fully mapped neural anatomy, transparent body, and genetic tractability, C. elegans serves as an ideal model for these studies. This review focuses on advanced methods for neural functional imaging in C. elegans, highlighting calcium imaging techniques, lab-on-a-chip technologies, and their applications in the study of various sensory modalities, including chemosensation, mechanosensation, thermosensation, photosensation, and magnetosensation. We discuss the benefits of these methods in terms of precision, reproducibility, and ability to study dynamic neural processes in real time, ultimately advancing our understanding of the fundamental principles of neural activity and connectivity.
Collapse
Affiliation(s)
- Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Jihye Kim
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Ye Bin Son
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Shin Sik Choi
- Department of Bio-Pharmaceutical Sciences, Myongji University, Yongin 17058, Republic of Korea;
- The Natural Science Research Institute, Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
- elegslab Inc., Seoul 06083, Republic of Korea
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
- elegslab Inc., Seoul 06083, Republic of Korea
| |
Collapse
|
3
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
4
|
Athira A, Dondorp D, Rudolf J, Peytral O, Chatzigeorgiou M. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire. PLoS Biol 2022; 20:e3001744. [PMID: 35925898 PMCID: PMC9352054 DOI: 10.1371/journal.pbio.3001744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli. Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.
Collapse
Affiliation(s)
- Athira Athira
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jerneja Rudolf
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Olivia Peytral
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
5
|
Harreguy MB, Tran TS, Haspel G. Neuronal Microsurgery with an Yb-Doped Fiber Femtosecond Laser. Methods Mol Biol 2022; 2468:319-328. [PMID: 35320573 DOI: 10.1007/978-1-0716-2181-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Laser microsurgery allows the user to ablate cell bodies or disconnect nerve fibers by using a laser microbeam focused through a microscope. This technique was pioneered in C. elegans where it led to exciting discoveries in the fields of development and neurobiology. All neurons studied so far in C. elegans can regenerate and regrow axons and dendrites after injury, allowing studies of the molecular and cellular basis of neuroregeneration. In this chapter, we describe how to assemble and operate a platform for Yb-doped fiber laser microsurgery. The novel laser setup described here is a more robust, lower cost, and user-friendly alternative to other femtosecond-pulsed laser systems.
Collapse
Affiliation(s)
- Maria B Harreguy
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, USA
| | - Tracy S Tran
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, USA
| | - Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, USA.
| |
Collapse
|
6
|
Batta I, Yao Q, Sabrin KM, Dovrolis C. A weighted network analysis framework for the hourglass effect-And its application in the C. elegans connectome. PLoS One 2021; 16:e0249846. [PMID: 34705821 PMCID: PMC8550382 DOI: 10.1371/journal.pone.0249846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding hierarchy and modularity in natural as well as technological networks is of utmost importance. A major aspect of such analysis involves identifying the nodes that are crucial to the overall processing structure of the network. More recently, the approach of hourglass analysis has been developed for the purpose of quantitatively analyzing whether only a few intermediate nodes mediate the information processing between a large number of inputs and outputs of a network. We develop a new framework for hourglass analysis that takes network weights into account while identifying the core nodes and the extent of hourglass effect in a given weighted network. We use this framework to study the structural connectome of the C. elegans and identify intermediate neurons that form the core of sensori-motor pathways in the organism. Our results show that the neurons forming the core of the connectome show significant differences across the male and hermaphrodite sexes, with most core nodes in the male concentrated in sex-organs while they are located in the head for the hermaphrodite. Our work demonstrates that taking weights into account for network analysis framework leads to emergence of different network patterns in terms of identification of core nodes and hourglass structure in the network, which otherwise would be missed by unweighted approaches.
Collapse
Affiliation(s)
- Ishaan Batta
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Qihang Yao
- School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kaeser M. Sabrin
- School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Constantine Dovrolis
- School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Byrd DT, Jin Y. Wired for insight-recent advances in Caenorhabditis elegans neural circuits. Curr Opin Neurobiol 2021; 69:159-169. [PMID: 33957432 PMCID: PMC8387325 DOI: 10.1016/j.conb.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
The completion of Caenorhabditis elegans connectomics four decades ago has long guided mechanistic investigation of neuronal circuits. Recent technological advances in microscopy and computation programs have aided re-examination of this connectomics, expanding our knowledge by both uncovering previously unreported synaptic connections and also generating models for neural networks underlying behaviors. Combining molecular information from single cell transcriptomes with elegant tools for cell-specific manipulation has further enhanced the ability to precisely investigate individual neurons in behaving animals. This mini-review aims to provide an overview of new information on connectomics and progress toward a molecular atlas of C. elegans nervous system, and discuss emerging findings on neuronal circuits.
Collapse
Affiliation(s)
- Dana T Byrd
- Neurobiology Section, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Yishi Jin
- Neurobiology Section, University of California San Diego, La Jolla, CA, 92093, USA; Kavli Institute of Brain and Mind, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Ijomone OM, Gubert P, Okoh COA, Varão AM, Amara LDO, Aluko OM, Aschner M. Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans. NEUROMETHODS 2021; 172:399-426. [PMID: 34754139 PMCID: PMC8575032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a prevailing model which is commonly utilized in a variety of biomedical research arenas, including neuroscience. Due to its transparency and simplicity, it is becoming a choice model organism for conducting imaging and behavioral assessment crucial to understanding the intricacies of the nervous system. Here, the methods required for neuronal characterization using fluorescent proteins and behavioral tasks are described. These are simplified protocols using fluorescent microscopy and behavioral assays to examine neuronal connections and associated neurotransmitter systems involved in normal physiology and aberrant pathology of the nervous system. Our aim is to make available to readers some streamlined and replicable procedures using C. elegans models as well as highlighting some of the limitations.
Collapse
Affiliation(s)
- Omamuyovwi M. Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Priscila Gubert
- Department of Biochemistry, Laboratório de Imunopatologia Keizo Asami, LIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Comfort O. A. Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Alexandre M. Varão
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Leandro de O. Amara
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Oritoke M. Aluko
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| |
Collapse
|
9
|
Batta I, Yao Q, Sabrin KM, Dovrolis C. A Weighted Network Analysis Framework for the Hourglass Effect — and its Application in the C. Elegans Connectome.. [DOI: 10.1101/2021.03.19.436224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
ABSTRACTUnderstanding hierarchy and modularity in natural as well as technological networks is of utmost importance. A major aspect of such analysis involves identifying the nodes that are crucial to the overall processing structure of the network. More recently, the approach of hourglass analysis has been developed for the purpose of quantitatively analyzing whether only a few intermediate nodes mediate the information processing between a large number of inputs and outputs of a network. We develop a new framework for hourglass analysis that takes network weights into account while identifying the core nodes and the extent of hourglass effect in a given weighted network. We use this framework to study the structural connectome of theC. elegansand identify intermediate neurons that form the core of sensori-motor pathways in the organism. Our results show that the neurons forming the core of the connectome show significant differences across the male and hermaphrodite sexes, with most core nodes in the male concentrated in sex-organs while they are located in the head for the hermaphrodite. Our work demonstrates that taking weights into account for network analysis framework leads to emergence of different network patterns in terms of identification of core nodes and hourglass structure in the network, which otherwise would be missed by unweighted approaches.
Collapse
|
10
|
George VK, Puppo F, Silva GA. Computing Temporal Sequences Associated With Dynamic Patterns on the C. elegans Connectome. Front Syst Neurosci 2021; 15:564124. [PMID: 33767613 PMCID: PMC7985353 DOI: 10.3389/fnsys.2021.564124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding how the structural connectivity and spatial geometry of a network constrains the dynamics it is able to support is an active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motorneuron activations in ventral (VB) and dorsal (DB) classes of motorneurons emerged from the simulations, which are qualitatively similar to rhythmic motorneuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent-and we propose-purposeful structural wiring to the C. elegans connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.
Collapse
Affiliation(s)
- Vivek Kurien George
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
| | - Francesca Puppo
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
- BioCircuits Institute, University of California, San Diego, San Diego, CA, United States
| | - Gabriel A. Silva
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
- BioCircuits Institute, University of California, San Diego, San Diego, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Conte D, Borisyuk R, Hull M, Roberts A. A simple method defines 3D morphology and axon projections of filled neurons in a small CNS volume: Steps toward understanding functional network circuitry. J Neurosci Methods 2020; 351:109062. [PMID: 33383055 DOI: 10.1016/j.jneumeth.2020.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Fundamental to understanding neuronal network function is defining neuron morphology, location, properties, and synaptic connectivity in the nervous system. A significant challenge is to reconstruct individual neuron morphology and connections at a whole CNS scale and bring together functional and anatomical data to understand the whole network. NEW METHOD We used a PC controlled micropositioner to hold a fixed whole mount of Xenopus tadpole CNS and replace the stage on a standard microscope. This allowed direct recording in 3D coordinates of features and axon projections of one or two neurons dye-filled during whole-cell recording to study synaptic connections. Neuron reconstructions were normalised relative to the ventral longitudinal axis of the nervous system. Coordinate data were stored as simple text files. RESULTS Reconstructions were at 1 μm resolution, capturing axon lengths in mm. The output files were converted to SWC format and visualised in 3D reconstruction software NeuRomantic. Coordinate data are tractable, allowing correction for histological artefacts. Through normalisation across multiple specimens we could infer features of network connectivity of mapped neurons of different types. COMPARISON WITH EXISTING METHODS Unlike other methods using fluorescent markers and utilising large-scale imaging, our method allows direct acquisition of 3D data on neurons whose properties and synaptic connections have been studied using whole-cell recording. CONCLUSIONS This method can be used to reconstruct neuron 3D morphology and follow axon projections in the CNS. After normalisation to a common CNS framework, inferences on network connectivity at a whole nervous system scale contribute to network modelling to understand CNS function.
Collapse
Affiliation(s)
- Deborah Conte
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| | - Roman Borisyuk
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom; Institute of Mathematical Problems of Biology, the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, 142290, Russia; School of Computing, Engineering and Mathematics, University of Plymouth, PL4 8AA, United Kingdom.
| | - Mike Hull
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom.
| | - Alan Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
12
|
Alvarez J, Alvarez-Illera P, García-Casas P, Fonteriz RI, Montero M. The Role of Ca 2+ Signaling in Aging and Neurodegeneration: Insights from Caenorhabditis elegans Models. Cells 2020; 9:cells9010204. [PMID: 31947609 PMCID: PMC7016793 DOI: 10.3390/cells9010204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is a ubiquitous second messenger that plays an essential role in physiological processes such as muscle contraction, neuronal secretion, and cell proliferation or differentiation. There is ample evidence that the dysregulation of Ca2+ signaling is one of the key events in the development of neurodegenerative processes, an idea called the "calcium hypothesis" of neurodegeneration. Caenorhabditis elegans (C. elegans) is a very good model for the study of aging and neurodegeneration. In fact, many of the signaling pathways involved in longevity were first discovered in this nematode, and many models of neurodegenerative diseases have also been developed therein, either through mutations in the worm genome or by expressing human proteins involved in neurodegeneration (β-amyloid, α-synuclein, polyglutamine, or others) in defined worm tissues. The worm is completely transparent throughout its whole life, which makes it possible to carry out Ca2+ dynamics studies in vivo at any time, by expressing Ca2+ fluorescent probes in defined worm tissues, and even in specific organelles such as mitochondria. This review will summarize the evidence obtained using this model organism to understand the role of Ca2+ signaling in aging and neurodegeneration.
Collapse
|
13
|
Pathak A, Chatterjee N, Sinha S. Developmental trajectory of Caenorhabditis elegans nervous system governs its structural organization. PLoS Comput Biol 2020; 16:e1007602. [PMID: 31895942 PMCID: PMC6959611 DOI: 10.1371/journal.pcbi.1007602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/14/2020] [Accepted: 12/11/2019] [Indexed: 11/22/2022] Open
Abstract
A central problem of neuroscience involves uncovering the principles governing the organization of nervous systems which ensure robustness in brain development. The nematode Caenorhabditis elegans provides us with a model organism for studying this question. In this paper, we focus on the invariant connection structure and spatial arrangement of the neurons comprising the somatic neuronal network of this organism to understand the key developmental constraints underlying its design. We observe that neurons with certain shared characteristics-such as, neural process lengths, birth time cohort, lineage and bilateral symmetry-exhibit a preference for connecting to each other. Recognizing the existence of such homophily and their relative degree of importance in determining connection probability within neurons (for example, in synapses, symmetric pairing is the most dominant factor followed by birth time cohort, process length and lineage) helps in connecting specific neuronal attributes to the topological organization of the network. Further, the functional identities of neurons appear to dictate the temporal hierarchy of their appearance during the course of development. Providing crucial insights into principles that may be common across many organisms, our study shows how the trajectory in the developmental landscape constrains the structural organization of a nervous system.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | | | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|