1
|
Kim SH, Park Y, Shin JW, Ha JW, Choi HM, Kim HS, Moon SH, Suk KS, Park SY, Lee BH, Kwon JW. Accelerated fusion dynamics by recombinant human bone morphogenetic protein-2 following transforaminal lumbar interbody fusion, particularly in osteoporotic conditions. Spine J 2024; 24:2078-2085. [PMID: 38909911 DOI: 10.1016/j.spinee.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND CONTEXT Early fusion is crucial in interbody procedures to minimize mechanical complications resulting from delayed union, especially for patients with osteoporosis. Bone morphogenetic proteins (BMPs) are used in spinal fusion procedures; however, limited evaluation exists regarding time-to-fusion for BMP use, particularly in patients with osteoporosis. PURPOSE To evaluate the difference in time-to-fusion after single-level transforaminal lumbar interbody fusion (TLIF) surgery between recombinant human bone morphogenetic protein-2 (rhBMP-2) usage and nonusage groups according to bone density. STUDY DESIGN Retrospective single-center cohort study. PATIENT SAMPLE This study enrolled 132 patients (mean age, 65.25±8.66; male patients, 40.9%) who underwent single-level TLIF for degenerative disorders between February 2012 and December 2021, with pre- and postoperative computed tomography (CT). OUTCOME MEASURE The interbody fusion mass and bone graft status on postoperative CT scans was obtained annually, and time-to-fusion was recorded for each patient. METHODS The patients were divided into 2 groups based on rhBMP-2 use during the interbody fusion procedure. Patients were further divided into osteoporosis, osteopenia, and normal groups based on preoperative L1 vertebral body attenuation values, using cutoffs of 90 and 120 Hounsfield units. It was strictly defined that fusion is considered complete when a trabecular bone bridge was formed, and therefore, the time-to-fusion was measured in years. Time-to-fusion was statistically compared between BMP group and non-BMP groups, followed by further comparison according to bone density. RESULTS The time-to-fusion differed significantly between BMP and non-BMP groups, with half of the patients achieving fusion within 2.5 years in the BMP group compared with 4 years in the non-BMP group (p<.001). The fusion rate varied based on bone density, with the maximum difference observed in the osteoporosis group, when half of the patients achieved fusion within 3 years in the BMP group compared to 5 years in the non-BMP group (p<.001). Subgroup analysis was conducted, revealing no significant associations between time-to-fusion and factors known to influence the fusion process, including age, gender, medical history, smoking and alcohol use, and medication history, except for rh-BMP2 use and bone density. CONCLUSIONS RhBMP-2 usage significantly reduced time-to-fusion in single-level TLIF, especially in patients with osteoporosis. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Sang-Ho Kim
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea; Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yung Park
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea.
| | - Jae-Won Shin
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea; Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joong-Won Ha
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea
| | - Hee-Min Choi
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea
| | - Hak-Sun Kim
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seong-Hwan Moon
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kyung-Soo Suk
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Si-Young Park
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Byung-Ho Lee
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji-Won Kwon
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
2
|
Balice G, Paolantonio M, De Ninis P, Rexhepi I, Serroni M, Frisone A, Romano L, Sinjari B, Murmura G, Femminella B. Treatment of Unfavorable Intrabony Defects with Autogenous Bone Graft in Combination with Leukocyte- and Platelet-Rich Fibrin or Collagen Membranes: A Non-Inferiority Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1091. [PMID: 39064520 PMCID: PMC11279108 DOI: 10.3390/medicina60071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Unfavorable intrabony defects (IBDs) are associated with the progression of periodontal disease and tooth loss. Growing scientific evidence has demonstrated the effectiveness of platelet concentrations in periodontal treatment. The aim of our study was to demonstrate the non-inferiority of an autogenous bone graft (ABG) associated with leukocyte- and platelet-rich fibrin (L-PRF) compared to ABG + Collagen Membrane in the treatment of IBDs. Material and Methods: Sixty-four patients with at least one IBD were randomly assigned to two groups: ABG+L-PRF and CM+ABG. Clinical and radiographic evaluations were performed at baseline and 12-month follow-up. Clinical attachment level (CAL), gingival recession (GR), probing pocket depth (PPD), and radiograph defect bone level (DBL) were compared between the two treatments. To evaluate the effectiveness of ABG+L-PRF, a non-inferiority margin of =1 mm (-1 mm for GR) was chosen; a second non-inferiority margin of =0.5 mm (-0.5 mm for GR) was set for clinical relevance. Results: At 12-month follow up, both treatments showed clinical and radiographic improvements. The 90% confidence intervals of the CM+ABG-L-PRF+ABG mean difference for CAL gain (-0.0564 mm [-0.316 to 0.203]), DBL gain (-0.433 mm [-0.721 to -0.145]), and PPD reduction (0.232 mm [0.015 to 0.449]) were below the 0.5 mm non-inferiority margin; the GR increase (0.255 mm [0.0645 to 0.445]) stayed above the -0.5 mm. Conclusions: the L-PRF+ABG treatment of unfavorable IBDs is non-inferior with respect to the CM+ABG therapy for CAL gain, but with a lower GR, a slightly higher PPD, and DBL gain.
Collapse
Affiliation(s)
- Giuseppe Balice
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Michele Paolantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Paolo De Ninis
- “Luisa D’Annunzio” Institute for High Culture, 65123 Pescara, Italy
| | - Imena Rexhepi
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Matteo Serroni
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Alessio Frisone
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Luigi Romano
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| | - Beatrice Femminella
- Department of Innovative Technologies in Medicine and Dentistry, “G. D’Annunzio” University, 66100 Chieti-Pescara, Italy; (G.B.); (M.P.); (I.R.); (M.S.); (A.F.); (L.R.); (B.S.); (G.M.)
| |
Collapse
|
3
|
Sawata S, Shimizu S, Matsumi Y, Kono Y, Kihara K, Yamamoto M, Sakamoto T, Umekita Y, Fujiwara Y. BMP Signaling Is a Prognostic Marker in Patients With Colorectal Cancer and Associates With Frailty. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:416-423. [PMID: 38962548 PMCID: PMC11215445 DOI: 10.21873/cdp.10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 07/05/2024]
Abstract
Background/Aim Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands and have been shown to promote or suppress colorectal cancer (CRC) growth. Developing treatments that target BMPs is challenging due to their multiple roles, including involvement in the inflammatory response and nutritional status. The present study evaluated the prognostic value of BMP-4, which is believed to be highly expressed in CRC, and its correlation with inflammatory and nutrition statuses in patients with CRC. Materials and Methods We analyzed BMP-4 expression in tumor tissues from 144 patients who underwent CRC surgery using immunohistochemistry and evaluated the relationship between BMP-4 levels and clinical outcomes. Results Kaplan-Meier analysis revealed that patients with high expression levels of BMP-4 exhibited a shorter overall survival rate than those with low levels of expression. Multivariate analysis revealed that BMP-4 expression was an independent prognostic factor for overall survival and death from other diseases in CRC patients. Furthermore, high BMP-4 expression was significantly correlated with high C-reactive protein/Albumin ratio, sarcopenia, and osteopenia. Conclusion BMP-4 is a significant prognostic factor in CRC, particularly in predicting death from other diseases, while also showing associations with inflammatory and nutritional statuses.
Collapse
Affiliation(s)
- Shohei Sawata
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shota Shimizu
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiaki Matsumi
- Division of Chemical Biology, Technical Department, Tottori University, Yonago, Japan
| | - Yusuke Kono
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kyoichi Kihara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Manabu Yamamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Teruhisa Sakamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiyuki Fujiwara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
4
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
5
|
Liu YCG, Teng AY. Distinct cross talk of IL-17 & TGF-β with the immature CD11c + TRAF6 (-/-) -null myeloid dendritic cell-derived osteoclast precursor (mDDOCp) may engage signaling toward an alternative pathway of osteoclastogenesis for arthritic bone loss in vivo. Immun Inflamm Dis 2024; 12:e1173. [PMID: 38415924 PMCID: PMC10851637 DOI: 10.1002/iid3.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Dendritic cells (DCs), though borne heterogeneous, are the most potent antigen-presenting cells, whose critical functions include triggering antigen-specific naïve T-cell responses and fine-tuning the innate versus adaptive immunity at the osteo-immune and/or mucosal mesenchyme interface. We previously reported that immature myeloid-CD11c+ DCs/mDCs may act like osteoclast (OC) precursors (OCp/mDDOCp) capable of developing into functional OCs via an alternative pathway of inflammation-induced osteoclastogenesis; however, what are their contribution and signaling interactions with key osteotropic cytokines (i.e., interleukin-17 [IL-17] and transforming growth factor-β [TGF-β]) to bearing such inflammatory bone loss in vivo remain unclear to date. METHODS Herein, we employed mature adult bone marrow-reconstituted C57BL/6 TRAF6(-/-) -null chimeras without the classical monocyte/macrophage (Mo/Mϕ)-derived OCs to address their potential contribution to OCp/mDDOCp-mediated osteoclastogenesis in the chicken type-II-collagen (CC-II)-induced joint inflammation versus arthritic bone loss and parallel associations with the double-positive CD11c+ TRAP+ TRAF6-null(-/-) DC-like OCs detected in vivo via the quantitative dual-immunohistochemistry and digital histomorphometry for analyses. RESULTS The resulting findings revealed the unrecognized novel insight that (i) immature myeloid-CD11c+ TRAF6(-/-) TRAP+ DC-like OCs were involved, co-localized, and strongly associated with joint inflammation and bone loss, independent of the Mo/Mϕ-derived classical OCs, in CC-II-immunized TRAF6(-/-) -null chimeras, and (ii) the osteotropic IL-17 may engage distinct crosstalk with CD11c+ mDCs/mDDOCp before developing the CD11c+ TRAP+ TRAF6(-/-) OCs via a TGF-β-dependent interaction toward inflammation-induced arthritic bone loss in vivo. CONCLUSION These results confirm and substantiate the validity of TRAF6(-/-) -null chimeras to address the significance of immature mCD11c+ TRAP+ DC-like OCs/mDDOCp subset for an alternative pathway of arthritic bone loss in vivo. Such CD11c+ mDCs/mDDOCp-associated osteoclastogenesis through the step-wise twist-in-turns osteo-immune cross talks are thereby theme highlighted to depict a summative re-visitation proposed.
Collapse
Affiliation(s)
- Yen Chun G. Liu
- Department of Oral HygieneCenter for Osteo‐immunology & Biotechnology Research (COBR), College of Dental Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Oral Hygiene & Nursing, and School of DentistryKanagawa Dental University (KDU)YokosukaKanagawaJapan
| | - Andy Yen‐Tung Teng
- The Eastman Institute for Oral Health (EIOH), School of Medicine & Dentistry, University of RochesterRochesterNew YorkUSA
- Center for Osteo‐immunology & Biotechnology Research (COBR), School of Dentistry, College of Dental Medicine, Kaohsiung Medical University (KMU) and KMU‐HospitalKaohsiungTaiwan
| |
Collapse
|
6
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
7
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The importance of BMPs and TGF-βs for endochondral bone repair - A longitudinal study in hip arthroplasty patients. Bone Rep 2023; 19:101723. [PMID: 38047271 PMCID: PMC10690547 DOI: 10.1016/j.bonr.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osseointegration of hip implants, although a decade-long process, shows striking similarities with the four major phases of endochondral bone repair. In the current study we investigated the spatiotemporal involvement of bone morphogenic proteins (BMPs) and transforming growth factor betas (TGF-βs) throughout the process of bone repair leading to successfully osseointegrated hip implants. Materials and methods Twenty-four patients that had undergone primary total hip arthroplasty (THA) due to one-sided osteoarthritis (OA) were investigated during a period of 18 years (Y) with repeated measurements of plasma biomarkers as well as clinical and radiological variables. All implants were clinically and radiographically well anchored throughout the follow-up. Eighty-one healthy donors divided in three gender- and age-matched groups and twenty OA patients awaiting THA, served as controls. Plasma was analyzed for BMP-1, -2, -3, -4, -6, -7 -9 and TGF-β1, -β2, -β3 by use of a high-sensitivity and wide dynamic range electrochemiluminescence technique allowing for detection of minor changes. Results Spatiotemporal changes during the follow-up are presented in the context of the four phases of endochondral bone repair shown in earlier studies and transposed to the current study based on similarities in biomarker responses. Phase 1: Primary proinflammatory phase lasting from surgery until day 7, Phase 2: Chondrogenic phase from day 7 until 18 months postsurgery, Phase 3: Secondary proinflammatory and cartilage remodeling phase lasting from 18 months until 7Y, Phase 4: coupled bone remodeling from 7Y until 18Y postsurgery. BMP-1 increased sharply shortly after surgery and remained significantly above healthy during the chondrocyte recruitment, proliferation, and hypertrophy phases with a subsequent return to control level at 5Y postsurgery. BMP-2 was above healthy controls before surgery and 1 day after surgery before decreasing to control level and remaining there throughout the follow-up. BMP-3 was at control level from presurgery until 6M after surgery when it increased to a peak at 2Y during the cartilage hypertrophy phase followed by a gradual decrease to control level at 10Y during the phase of bone formation. In the following, BMP-3 decreased below controls to a nadir 15Y postsurgery during coupled bone remodeling. BMP-4 was at control level from presurgery until 10Y postsurgery when it increased to a sharp peak at 15Y after surgery followed by a return to the level of healthy at 18Y. BMP-6 did not differ from healthy during the follow-up. BMP-7 was at control level from presurgery until 1Y postsurgery before gradually increasing to a peak at 10Y during the early phase of osteogenesis with a gradual return to control level at 18Y during the phase of coupled bone remodeling. BMP-9 was above OA before surgery followed by a decrease to basal level on day 1 after surgery and a renewed increase to a plateau above controls lasting from 6 W until returning to the level of healthy at 18Y postsurgery, i.e., throughout the phases of cartilage formation, cartilage hypertrophy and remodeling, bone formation and coupled bone remodeling. TGF-β1 was above controls presurgery before decreasing to baseline shortly after surgery followed by a renewed increase at 6 M to a peak at 2Y during cartilage hypertrophy/remodeling followed by a gradual return to baseline at 10Y during early osteoblastogenesis. TGF-β2 was at control level from presurgery until the phase of cartilage remodeling at 5Y when it increased sharply to a peak at 7Y with a gradual return to baseline at 18Y postsurgery. TGF-β3 remained at control level throughout the study. Conclusion This study shows that the involvement of BMPs and TGF-βs in endochondral bone repair is a process of stepwise recruitment of individual biomarkers characterized by distinct, yet overlaping, spatiotemporal patterns that extend from the early phase of pre-chondrocyte recruitment until the late phase of coupled bone remodeling.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
8
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023; 13:biom13030483. [PMID: 36979418 PMCID: PMC10046187 DOI: 10.3390/biom13030483] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis, one of the serious health diseases, involves bone mass loss, bone density diminishing, and degeneration of bone microstructure, which is accompanied by a tendency toward bone fragility and a predisposition to fracture. More than 200 million people worldwide suffer from osteoporosis, and the cost of treating osteoporotic fractures is expected to reach at least $25 billion by 2025. The generation and development of osteoporosis are regulated by genetic factors and regulatory factors such as TGF-β, BMP, and FGF through multiple pathways, including the Wnt signaling pathway, the Notch signaling pathway, and the MAPK signaling pathway. Among them, the Wnt signaling pathway is one of the most important pathways. It is not only involved in bone development and metabolism but also in the differentiation and proliferation of chondrocytes, mesenchymal stem cells, osteoclasts, and osteoblasts. Dkk-1 and SOST are Wnt inhibitory proteins that can inhibit the activation of the canonical Wnt signaling pathway and block the proliferation and differentiation of osteoblasts. Therefore, they may serve as potential targets for the treatment of osteoporosis. In this review, we analyzed the mechanisms of Wnt proteins, β-catenin, and signaling molecules in the process of signal transduction and summarized the relationship between the Wnt signaling pathway and bone-related cells. We hope to attract attention to the role of the Wnt signaling pathway in osteoporosis and offer new perspectives and approaches to making a diagnosis and giving treatment for osteoporosis.
Collapse
|
10
|
Niu Z, Xue H, Jiang Z, Chai L, Wang H. Effects of temperature on metamorphosis and endochondral ossification in Rana chensinensis tadpoles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101057. [PMID: 36657230 DOI: 10.1016/j.cbd.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Temperature is one of the important factors affecting the growth, development, and metamorphosis of amphibians. Endochondral ossification during metamorphosis plays a crucial role in amphibian survival and adaptation on land. In this study, we explored the effects of different temperature treatments on the growth, development, and endochondral ossification of Rana chensinensis tadpoles during metamorphosis. The results showed that high temperature exposure may affect the skeletal development of tadpoles during metamorphosis, such as reduction of bone length and ossification of limbs, thyroid gland damage and change of ossification-related genes expression levels,and ultimately affect the movement and survival of tadpoles in the terrestrial environment. These results provide an experimental reference for further research on the effects of temperature on amphibian growth and development and provide an important theoretical basis for the decline of the amphibian population caused by temperature.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - HaoYu Xue
- School of Philosophy and Government, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Xie L, Zeng J, He M. Identification and verification of a BMPs-related gene signature for osteosarcoma prognosis prediction. BMC Cancer 2023; 23:181. [PMID: 36814224 PMCID: PMC9945650 DOI: 10.1186/s12885-023-10660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND This study aimed to get a deeper insight into new osteosarcoma (OS) signature based on bone morphogenetic proteins (BMPs)-related genes and to confirm the prognostic pattern to speculate on the overall survival among OS patients. METHODS Firstly, pathway analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were managed to search for possible prognostic mechanisms attached to the OS-specific differentially expressed BMPs-related genes (DEBRGs). Secondly, univariate and multivariate Cox analysis was executed to filter the prognostic DEBRGs and establish the polygenic model for risk prediction in OS patients with the least absolute shrinkage and selection operator (LASSO) regression analysis. The receiver operating characteristic (ROC) curve weighed the model's accuracy. Thirdly, the GEO database (GSE21257) was operated for independent validation. The nomogram was initiated using multivariable Cox regression. Immune infiltration of the OS sample was calculated. Finally, the three discovered hallmark genes' mRNA and protein expressions were verified. RESULTS A total of 46 DEBRGs were found in the OS and control samples, and three prognostic DEBRGs (DLX2, TERT, and EVX1) were screened under the LASSO regression analyses. Multivariate and univariate Cox regression analysis were devised to forge the OS risk model. Both the TARGET training and validation sets indicated that the prognostic biomarker-based risk score model performed well based on ROC curves. In high- and low-risk groups, immune cells, including memory B, activated mast, resting mast, plasma, and activated memory CD4 + T cells, and the immune, stromal, and ESTIMATE scores showed significant differences. The nomogram that predicts survival was established with good performance according to clinical features of OS patients and risk scores. Finally, the expression of three crucial BMP-related genes in OS cell lines was investigated using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). CONCLUSION The new BMP-related prognostic signature linked to OS can be a new tool to identify biomarkers to detect the disease early and a potential candidate to better treat OS in the future.
Collapse
Affiliation(s)
- Long Xie
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Trauma Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Jiaxing Zeng
- Trauma Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Provera MD, Straign DM, Karimpour P, Ihle CL, Owens P. Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer Rep (Hoboken) 2023; 6:e1707. [PMID: 36054271 PMCID: PMC9940003 DOI: 10.1002/cnr2.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.
Collapse
Affiliation(s)
- Meredith D. Provera
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Desiree M. Straign
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | | | - Claire L. Ihle
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Philip Owens
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care SystemAuroraColoradoUSA
| |
Collapse
|
13
|
Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol 2022; 13:975181. [PMID: 36278157 PMCID: PMC9585202 DOI: 10.3389/fphar.2022.975181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Melatonin is an important endogenous hormone that modulates homeostasis in the microenvironment. Recent studies have indicated that serum melatonin levels are closely associated with the occurrence and development of osteoporosis in postmenopausal women. Exogenous melatonin could also improve bone mass and increase skeletal strength. To determine the underlying mechanisms of melatonin in the prevention and treatment of postmenopausal osteoporosis, we performed this review to analyze the role of melatonin in bone metabolism according to its physiological functions. Serum melatonin is related to bone mass, the measurement of which is a potential method for the diagnosis of osteoporosis. Melatonin has a direct effect on bone remodeling by promoting osteogenesis and suppressing osteoclastogenesis. Melatonin also regulates the biological rhythm of bone tissue, which benefits its osteogenic effect. Additionally, melatonin participates in the modulation of the bone microenvironment. Melatonin attenuates the damage induced by oxidative stress and inflammation on osteoblasts and prevents osteolysis from reactive oxygen species and inflammatory factors. As an alternative drug for osteoporosis, melatonin can improve the gut ecology, remodel microbiota composition, regulate substance absorption and maintain metabolic balance, all of which are beneficial to the health of bone structure. In conclusion, our review systematically demonstrates the effects of melatonin on bone metabolism. Based on the evidence in this review, melatonin will play a more important role in the diagnosis, prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences Shenyang, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| |
Collapse
|
14
|
Age-Related Low Bone Mineral Density in C57BL/6 Mice Is Reflective of Aberrant Bone Morphogenetic Protein-2 Signaling Observed in Human Patients Diagnosed with Osteoporosis. Int J Mol Sci 2022; 23:ijms231911205. [PMID: 36232525 PMCID: PMC9570292 DOI: 10.3390/ijms231911205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis (OP) is a bone disorder characterized by decreased bone mineral density (BMD). Bone Morphogenetic Protein-2 (BMP-2) injections are used to promote bone formation in OP patients. However, patients are unresponsive to BMP-2 while displaying an upregulation of BMP Receptor Type 1a (BMPRIa) and protein kinase CK2α (CK2α). A synthetically produced peptide named casein kinase 2.3 (CK2.3) utilizes the BMP-signaling pathway as it enhances osteogenesis of primary osteoblasts isolated from OP patients, whereas BMP-2 does not. Although shown in OP patients, there is currently no reliable mouse model to study BMP-2 and CK2.3 signaling. In this publication, we show that BMPRIa was required for CK2.3-mediated osteogenesis in C2C12 cells with a CRISPR-Cas9-mediated gene knockout for BMPRIa. We utilized the C57BL/6 (B6) mouse strain as an aging-model to study aberrant BMP-2 signaling, demonstrating that, like OP patients, in 15 and 20-month mice, BMP-2 did not increase bone growth and displayed upregulated BMPRIa and CK2α protein expression. Furthermore, CK2.3 enhanced osteogenesis and decreased osteoclastogenesis in all age groups, whereas BMP-2 only increased mineralization in 6-month mice while increasing osteoclast formation in all age groups. These data demonstrated that aging B6 mice were a reliable model and mimicked data obtained from OP patients.
Collapse
|
15
|
Sun X, Li K, Li BY, Yokota H. Wnt signaling: a double-edged sword in protecting bone from cancer. J Bone Miner Metab 2022; 41:365-370. [PMID: 36040520 DOI: 10.1007/s00774-022-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a critical role in loading-driven bone formation and bone homeostasis, whereas its activation in cancer cells promotes their progression. Currently, major research efforts in cancer treatment have been directed to the development of Wnt inhibitors. Recent studies on tumor-bone interactions, however, presented multiple lines of evidence that support a tumor-suppressive role of Lrp5, a Wnt co-receptor, and β-catenin, in Wnt signaling. This review describes the action of Wnt signaling as a double-edged sword in the bone microenvironment and suggests the possibility of a novel option for protecting bone from cancer.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
17
|
Ahmad HI, Ijaz N, Afzal G, Asif AR, ur Rehman A, Rahman A, Ahmed I, Yousaf M, Elokil A, Muhammad SA, Albogami SM, Alotaibi SS. Computational Insights into the Structural and Functional Impacts of nsSNPs of Bone Morphogenetic Proteins. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4013729. [PMID: 35832847 PMCID: PMC9273450 DOI: 10.1155/2022/4013729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
BMPs (bone morphogenetic proteins) are multipurpose (transforming growth factor)TGF-superfamily released cytokines. These glycoproteins, acting as disulfide-linked homo- or heterodimers, are highly potent regulators of bone and cartilage production and repair, cell proliferation throughout embryonic development, and bone homeostasis in the adults. Due to the fact that genetic variation might influence structural functions, this study is aimed to determine the pathogenic effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in BMP genes. The implications of these variations, investigated using computational analysis and molecular models of the mature TGF-β domain, revealed the impact of modifications on the function of BMP protein. The three-dimensional (3D) structure analysis was performed on the nsSNP Y316S, V386G, E387G, C389G, and C391G nsSNP in the TGF-β domain of chicken BMP2 and H344P, S347P, V357A nsSNP in the TGF-β domain of chicken BMP4 protein that was anticipated to be harmful and of high risk. The ability of the proteins to perform variety of tasks interact with other molecules depends on their tertiary structural composition. The current analysis revealed the four most damaging variants (Y316S, V386G, E387G, C389G, and C391G), highly conserved and functional and are located in the TGF-beta domain of BMP2 and BMP4. The amino acid substitutions E387G, C389G, and C391G are discovered in the binding region. It was observed that the mutations in the TGF-beta domain caused significant changes in its structural organization including the substrate binding sites. Current findings will assist future research focused on the role of these variants in BMP function loss and their role in skeletal disorders, and this will possibly help to develop practical strategies for treating bone-related conditions.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Science, Faculty of Veterinary Sciences, Bahauddin Zakariya University Multan, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Akhtar Rasool Asif
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Aziz ur Rehman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Abdur Rahman
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
- Department of Animal Nutrition, Afyon Kocatepe University, Turkey
| | - Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Yousaf
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Abdelmotaleb Elokil
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Sayyed Aun Muhammad
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
19
|
Differentiation of Cells Isolated from Human Femoral Heads into Functional Osteoclasts. J Dev Biol 2022; 10:jdb10010006. [PMID: 35225960 PMCID: PMC8883933 DOI: 10.3390/jdb10010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.
Collapse
|
20
|
Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2569. [PMID: 34685010 PMCID: PMC8538947 DOI: 10.3390/nano11102569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Nano-hydroxyapatite (nHA) has been widely used as an orthopedic biomaterial and vehicle for drug delivery owing to its chemical and structural similarity to bone minerals. Several studies have demonstrated that nHA based biomaterials have a potential effect for bone regeneration with very minimal to no toxicity or inflammatory response. This systematic review aims to provide an appraisal of the effectiveness of nHA as a delivery system for bone regeneration and whether the conjugation of proteins, antibiotics, or other bioactive molecules to the nHA further enhances osteogenesis in vivo. Out of 282 articles obtained from the literature search, only 14 articles met the inclusion criteria for this review. These studies showed that nHA was able to induce bone regeneration in various animal models with large or critical-sized bone defects, open fracture, or methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis. The conjugations of drugs or bioactive molecules such as bone-morphogenetic protein-2 (BMP-2), vancomycin, calcitriol, dexamethasone, and cisplatin were able to enhance the osteogenic property of nHA. Thus, nHA is a promising delivery system for a variety of compounds in promoting bone regeneration in vivo.
Collapse
Affiliation(s)
- Anis Syauqina Mohd Zaffarin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| | - Shiow-Fern Ng
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, W.P. Kuala Lumpur, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| |
Collapse
|