1
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Kauffman MR, DiAngelo JR. Glut1 Functions in Insulin-Producing Neurons to Regulate Lipid and Carbohydrate Storage in Drosophila. Biomolecules 2024; 14:1037. [PMID: 39199423 PMCID: PMC11353170 DOI: 10.3390/biom14081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity remains one of the largest health problems in the world, arising from the excess storage of triglycerides (TAGs). However, the full complement of genes that are important for regulating TAG storage is not known. The Glut1 gene encodes a Drosophila glucose transporter that has been identified as a potential obesity gene through genetic screening. Yet, the tissue-specific metabolic functions of Glut1 are not fully understood. Here, we characterized the role of Glut1 in the fly brain by decreasing neuronal Glut1 levels with RNAi and measuring glycogen and TAGs. Glut1RNAi flies had decreased TAG and glycogen levels, suggesting a nonautonomous role of Glut1 in the fly brain to regulate nutrient storage. A group of hormones that regulate metabolism and are expressed in the fly brain are Drosophila insulin-like peptides (Ilps) 2, 3, and 5. Interestingly, we observed blunted Ilp3 and Ilp5 expression in neuronal Glut1RNAi flies, suggesting Glut1 functions in insulin-producing neurons (IPCs) to regulate whole-organism TAG and glycogen storage. Consistent with this hypothesis, we also saw fewer TAGs and glycogens and decreased expression of Ilp3 and Ilp5 in flies with IPC-specific Glut1RNAi. Together, these data suggest Glut1 functions as a nutrient sensor in IPCs, controlling TAG and glycogen storage and regulating systemic energy homeostasis.
Collapse
Affiliation(s)
- Matthew R Kauffman
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA 19610, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA 19610, USA
| |
Collapse
|
3
|
Garratt M, Try H, Neyt C, Brooks RC. Exposure to female olfactory cues hastens reproductive ageing and increases mortality when mating in male mice. Proc Biol Sci 2024; 291:20231848. [PMID: 38412966 PMCID: PMC10898972 DOI: 10.1098/rspb.2023.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Theories of ageing predict that investment in reproduction will trade-off against survival and later-life reproduction. Recent evidence from invertebrates suggests that just perceiving cues of a potential mate's presence can reduce lifespan, particularly in males, and that activation of neuroendocrine reward pathways associated with mating can alleviate these effects. Whether similar effects occur in vertebrates remains untested. We tested whether exposure to olfactory cues from the opposite sex would influence mortality and reproductive senescence in male mice. We observed that males exposed to female olfactory cues from middle- to old age (from 10 to 24 months of age) showed reduced late-life fertility, irrespective of whether they had also been allowed to mate with females earlier in life. Males that were exposed to female odours in conjunction with mating also showed an increased mortality rate across the exposure period, indicating that olfactory cues from females can increase male mortality in some environments. Our results show that exposure to female odours can influence reproductive ageing and mortality in male mice, highlighting that sensory perception of mates may be an important driver of life-history trade-offs in mammals.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Heather Try
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christine Neyt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert C Brooks
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Remy NQ, Guevarra JA, Vonhoff FJ. Food supplementation with wheat gluten leads to climbing performance decline in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000642. [PMID: 36217442 PMCID: PMC9547276 DOI: 10.17912/micropub.biology.000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022]
Abstract
Gluten sensitivity is associated with digestive and neurological disorders, correlating with abnormal amino acid levels, innate immune responses, gut dysbiosis and movement incoordination. However, the molecular mechanisms linking dietary gluten and brain function remain incompletely understood. We used Drosophila melanogaster to test the effects of gluten ingestion in locomotion performance. Whereas flies on control food showed decreased climbing performance after five weeks, flies exposed to food supplemented with different gluten concentrations showed a significant locomotion decline after three weeks of treatment. Future studies will determine the mechanisms underlying the observed gluten-dependent phenotypes to establish Drosophila models for gluten sensitivity.
Collapse
Affiliation(s)
| | | | - Fernando J Vonhoff
- University of Maryland Baltimore County, Baltimore, MD, United States
,
Correspondence to: Fernando J Vonhoff (
)
| |
Collapse
|
5
|
Cheng J, Zhao P, Zhu L, Zhu F, Tian Z, Shen Z, Liu X, Liu X. Corazonin signaling modulates the synthetic activity of male accessory gland in Grapholita molesta. Int J Biol Macromol 2022; 216:446-455. [PMID: 35810848 DOI: 10.1016/j.ijbiomac.2022.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Although neuropeptide corazonin (Crz) has been identified in numerous insect species, the research about its function in regulation of reproduction is still in its infancy. Herein, we characterized the Crz (GmolCrz) and its receptor (GmolCrzR) to investigate their reproductive function in Grapholita molesta. Both molecular docking result and cell-based receptor activity assay showed that GmolCrz could interact with GmolCrzR. Additionally, spatial expression patterns of GmolCrz and GmolCrzR in males were evaluated. Knockdown of GmolCrz or GmolCrzR significantly lengthened copulation duration and decreased fertility in males. In these males, we found that the production of sperm was normal, while the content of accessory gland proteins (Acps) in the accessory gland (AG) was strongly diminished. Furthermore, knockdown of GmolCrz or GmolCrzR in males had no effect on sperm and Acps transfer to females. RNA-seq and gene expression analyses further confirmed that genes involved in serine-type endopeptidase activity were significantly downregulated in the AG upon GmolCrzR knockdown. Finally, sperm activation assays demonstrated that this process was disrupted in the spermatophore of females mated with GmolCrz or GmolCrzR knockdown males, which may cause the decreased fertility in males. Our findings provide new insights into the functions of Crz signaling in a Lepidopteran insect.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Peng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Oyeyinka A, Kansal M, O’Sullivan SM, Gualtieri C, Smith ZM, Vonhoff FJ. Corazonin Neurons Contribute to Dimorphic Ethanol Sedation Sensitivity in Drosophila melanogaster. Front Neural Circuits 2022; 16:702901. [PMID: 35814486 PMCID: PMC9256964 DOI: 10.3389/fncir.2022.702901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol has multiple effects on nervous system function, and organisms have evolved mechanisms to optimally respond to the presence of ethanol. Sex differences in ethanol-induced behaviors have been observed in several organisms, ranging from humans to invertebrates. However, the molecular mechanisms underlying the dimorphic regulation of ethanol-induced behaviors remain incompletely understood. Here, we observed sex differences in ethanol sedation sensitivity in Drosophila Genome Reference Panel (DGRP) lines of Drosophila melanogaster compared to the absence of dimorphism in standard laboratory wildtype and control lines. However, in dose response experiments, we were able to unmask dimorphic responses for the control mutant line w 1118 by lowering the testing ethanol concentration. Notably, feminization of the small population of Corazonin (Crz) neurons in males was sufficient to induce female-like sedation sensitivity. We also tested the role of the transcription factor apontic (apt) based on its known expression in Crz neurons and its regulation of sedation responses. Interestingly, loss of function apt mutations increased sedation times in both males and females as compared to controls. No significant difference between male and female apt mutants was observed, suggesting a possible role of apt in the regulation of dimorphic ethanol-induced responses. Thus, our results shed light into the mechanisms regulating sex-differences in ethanol-induced behaviors at the cellular and molecular level, suggesting that the genetic sex in a small neuronal population plays an important role in modulating sex differences in behavioral responses to ethanol.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando J. Vonhoff
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
7
|
Soni KK, Jeong HS, Jang S. Neurons for Ejaculation and Factors Affecting Ejaculation. BIOLOGY 2022; 11:biology11050686. [PMID: 35625414 PMCID: PMC9138817 DOI: 10.3390/biology11050686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Sexual dysfunctions are rarely discussed in our current society. Males experience different sexual dysfunctions, including erectile, infertility, and ejaculatory dysfunctions. In this review only the ejaculatory dysfunction will be discussed. Ejaculation is defined as the ejection of contents collectively from the vas deferens, seminal vesicle, prostate and Cowper’s glands. It is completely controlled by a population of neurons present in the lumbar spinal cord. The presence of lesion in these neurons ceases the ejaculatory behavior in males. This population of neurons was first identified in rats; however, recently it was confirmed that these neurons are present in human males as well. The issues are known as ejaculatory dysfunction. The following are the different types of ejaculatory dysfunctions: early ejaculation, ejaculation into the urinary bladder, late ejaculation and no ejaculation. Abstract Ejaculation is a reflex and the last stage of intercourse in male mammals. It consists of two coordinated phases, emission and expulsion. The emission phase consists of secretions from the vas deferens, seminal vesicle, prostate, and Cowper’s gland. Once these contents reach the posterior urethra, movement of the contents becomes inevitable, followed by the expulsion phase. The urogenital organs are synchronized during this complete event. The L3–L4 (lumbar) segment, the spinal cord region responsible for ejaculation, nerve cell bodies, also called lumbar spinothalamic (LSt) cells, which are denoted as spinal ejaculation generators or lumbar spinothalamic cells [Lst]. Lst cells activation causes ejaculation. These Lst cells coordinate with [autonomic] parasympathetic and sympathetic assistance in ejaculation. The presence of a spinal ejaculatory generator has recently been confirmed in humans. Different types of ejaculatory dysfunction in humans include premature ejaculation (PE), retrograde ejaculation (RE), delayed ejaculation (DE), and anejaculation (AE). The most common form of ejaculatory dysfunction studied is premature ejaculation. The least common forms of ejaculation studied are delayed ejaculation and anejaculation. Despite the confirmation of Lst in humans, there is insufficient research on animals mimicking human ejaculatory dysfunction.
Collapse
|
8
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|