1
|
Kharissova OV, Nikolaev AL, Kharisov BI, Dorozhkin SV, López I, Méndez YP, de la Fuente IG. Enzymatic synthesis of calcium phosphates: A review. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101214. [DOI: 10.1016/j.nanoso.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
2
|
Silingardi F, Pagani S, Gambardella A, Giavaresi G, Bigi A, Boanini E. Anti-Oxidant Multi-Functionalized Materials: Strontium-Substituted Monetite and Brushite as Delivery Systems for Curcumin. Pharmaceutics 2023; 15:pharmaceutics15051344. [PMID: 37242586 DOI: 10.3390/pharmaceutics15051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Gambardella
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry ''Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
3
|
Adelnia H, Sirous F, Blakey I, Ta HT. Metal ion chelation of poly(aspartic acid): From scale inhibition to therapeutic potentials. Int J Biol Macromol 2023; 229:974-993. [PMID: 36584782 DOI: 10.1016/j.ijbiomac.2022.12.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Poly(aspartic acid) (PASP) is a biodegradable, biocompatible water-soluble synthetic anionic polypeptide. PASP has shown a strong affinity and thus robust complexation with heavy and alkaline earth metal ions, from which several applications are currently benefiting, and several more could also originate. This paper discusses different areas where the ion chelation ability of PASP has thus far been exploited. Due to its calcium chelation ability, PASP prevents precipitation of calcium salts and hence is widely used as an effective scale inhibitor in industry. Due to potassium chelation, PASP prevents precipitation of potassium tartrate and is employed as an efficient and edible stabilizer for wine preservation. Due to iron chelation, PASP inhibits corrosion of steel surfaces in harsh environments. Due to chelation, PASP can also enhance stability of various colloidal systems that contain metal ions. The chelation ability of PASP alleviated the toxicity of heavy metals in Zebrafish, inhibited the formation of kidney stones and dissolved calcium phosphate which is the main mineral of the calcified vasculature. These findings and beyond, along with the biocompatibility and biodegradability of the polymer could direct future investigations towards chelation therapy by PASP and other novel and undiscovered areas where metal ions play a key role.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fariba Sirous
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia; Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
4
|
Guo J, Wu S, Zhang X, Xie H, Chen F, Yang Y, Zhu R. The fate of Cd during the replacement of Cd-bearing calcite by calcium phosphate minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120491. [PMID: 36283469 DOI: 10.1016/j.envpol.2022.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Carbonate-bound speciation is a critical sink of potentially toxic elements (PTEs) like cadmium (Cd) in soil and sediment. In a phosphate-rich environment, carbonate minerals could be replaced by phosphate minerals such as dicalcium phosphate dihydrate (DCPD, also known as brushite), octacalcium phosphate (OCP), and hydroxylapatite (HAP). Currently, it is unclear the migration and fate of PTEs during the replacement of PTEs-bearing carbonates by HAP and related intermediate minerals. Therefore, we synthesized Cd-bearing calcite by the coprecipitation method and converted it to DCPD, OCP, and HAP to investigate the redistribution and fate of Cd. The results showed that Cd incorporation in calcite significantly inhibited their replacement by DCPD and OCP, respectively. 1.26% of Cd in calcite was released into the solution when DCPD replaced calcite, and subsequently, most of the released Cd was recaptured by OCP. Significantly, the released Cd was below 0.05‰ when all the solid converted to HAP. These results suggested that with the application of phosphate fertilizer in alkaline soil, the secondary calcium phosphate minerals could control the environmental behavior of Cd.
Collapse
Affiliation(s)
- Jianan Guo
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049, Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China.
| | - Xiaohang Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049, Beijing, China
| | - Hong Xie
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049, Beijing, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640, Guangzhou, China
| |
Collapse
|
5
|
Iqbal N, Braxton TM, Anastasiou A, Raif EM, Chung CKY, Kumar S, Giannoudis PV, Jha A. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6245. [PMID: 36143561 PMCID: PMC9506122 DOI: 10.3390/ma15186245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Dicalcium Phosphate Dihydrate (DCPD) mineral scaffolds alone do not possess the mechanical flexibility, ease of physicochemical properties' tuneability or suitable porosity required for regenerative bone scaffolds. Herein, we fabricated highly porous freeze-dried chitosan scaffolds embedded with different concentrations of Dicalcium Phosphate Dihydrate (DCPD) minerals, i.e., 0, 20, 30, 40 and 50 (wt)%. Increasing DCPD mineral concentration led to increased scaffold crystallinity, where the % crystallinity for CH, 20, 30, 40, and 50-DCPD scaffolds was determined to be 0.1, 20.6, 29.4, 38.8 and 69.9%, respectively. Reduction in scaffold pore size distributions was observed with increasing DCPD concentrations of 0 to 40 (wt)%; coalescence and close-ended pore formation were observed for 50-DCPD scaffolds. 50-DCPD scaffolds presented five times greater mechanical strength than the DCPD mineral-free scaffolds (CH). DCPD mineral enhanced cell proliferation for the 20, 30 and 40-DCPD scaffolds. 50-DCPD scaffolds presented reduced pore interconnectivity due to the coalescence of many pores in addition to the creation of closed-ended pores, which were found to hinder osteoblast cell proliferation.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sandeep Kumar
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Monetite vs. Brushite: Different Influences on Bone Cell Response Modulated by Strontium Functionalization. J Funct Biomater 2022; 13:jfb13020065. [PMID: 35735920 PMCID: PMC9225351 DOI: 10.3390/jfb13020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Monetite and brushite are regarded with increasing interest for the preparation of biomaterials for applications in the musculoskeletal system. Herein, we investigated the influence of strontium substitution in the structures of these two phosphates on bone cell response. To achieve this aim, co-cultures of human primary osteoclasts and human osteoblast-like MG63 cells were tested on strontium-substituted monetite and strontium-substituted brushite, as well as on monetite and brushite, as controls. In both structures, strontium substitution for calcium amounted to about 6 at% and provoked enlargement of the cell parameters and morphologic variations. Cumulative release in physiological solution increased linearly over time and was greater from brushite (up to about 160 and 560 mg/L at 14 days for Sr and Ca, respectively) than from monetite (up to about 90 and 250 mg/L at 14 days for Sr and Ca, respectively). The increasing viability of osteoblast-like cells over time, with the different expression level of some typical bone markers, indicates a more pronounced trigger toward osteoblast differentiation and osteoclast inhibition by brushite materials. In particular, the inhibition of cathepsin K and tartrate-resistant acid phosphatase at the gene and morphological levels suggests strontium-substituted brushite can be applied in diseases characterized by excessive bone resorption.
Collapse
|
7
|
Ghajeri F, Leifer K, Larsson A, Engqvist H, Xia W. The Influence of Residuals Combining Temperature and Reaction Time on Calcium Phosphate Transformation in a Precipitation Process. J Funct Biomater 2022; 13:jfb13010009. [PMID: 35225973 PMCID: PMC8883985 DOI: 10.3390/jfb13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Precipitation is one of the most common processes to synthesize hydroxyapatite, which is the human body’s mineral forming bone and teeth, and the golden bioceramic material for bone repair. Generally, the washing step is important in the precipitation method to remove the residuals in solution and to stabilize the phase transformation. However, the influence of residuals in combination with the reaction temperature and time, on calcium phosphate formation, is not well studied. This could help us with a better understanding of the typical synthesis process. We used a fixed starting ion concentration and pH in our study and did not adjust it during the reaction. XRD, FTIR, ICP-OES, and SEM have been used to analyze the samples. The results showed that combining residuals with both reaction temperature and time can significantly influence calcium phosphate formation and transformation. Dicalcium phosphate dihydrate formation and transformation are sensitive to temperature. Increasing temperature (60 °C) can inhibit the formation of acidic calcium phosphate or transform it to other phases, and further the particle size. It was also observed that high reaction temperature (60 °C) results in higher precipitation efficiency than room temperature. A low ion concentration combining reaction temperature and time could still significantly influence the calcium phosphate transformation during the drying.
Collapse
Affiliation(s)
- Farnaz Ghajeri
- Applied Material Science, Department of Engineering Science, Uppsala University, 75121 Uppsala, Sweden; (F.G.); (K.L.); (H.E.)
| | - Klaus Leifer
- Applied Material Science, Department of Engineering Science, Uppsala University, 75121 Uppsala, Sweden; (F.G.); (K.L.); (H.E.)
| | - Anders Larsson
- RISE Research Institutes of Sweden (RISE), 11428 Stockholm, Sweden;
| | - Håkan Engqvist
- Applied Material Science, Department of Engineering Science, Uppsala University, 75121 Uppsala, Sweden; (F.G.); (K.L.); (H.E.)
| | - Wei Xia
- Applied Material Science, Department of Engineering Science, Uppsala University, 75121 Uppsala, Sweden; (F.G.); (K.L.); (H.E.)
- Correspondence:
| |
Collapse
|
8
|
Guo J, Zhang X, Wang M, Wu S, Chen F, Yang Y. Ferric iron incorporation promotes brushite hydrolysis and enhances cadmium immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146266. [PMID: 33721635 DOI: 10.1016/j.scitotenv.2021.146266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Dissolution-precipitation processes on the surface of brushite (dicalcium phosphate dihydrate, DCPD) control the migration and transformation of potentially harmful elements (PHEs). The incorporation of impurities could affect the properties of DCPD and its interactions with PHEs. In this study, we synthesized Fe3+-bearing DCPD via coprecipitation and investigated the influence of Fe3+ incorporation on the crystal structure, hydrolysis process, and Cd removal performance. Fe-bearing DCPD had lattice expansion due to the coupled substitution of Fe3+ and NH4+ for Ca2+. Therefore, the Cd removal performance of Fe-DCPD was enhanced, with a maximum Cd uptake capacity of 431.6 mg/g, which is 1.77 times that of Fe-free DCPD (244.4 mg/g). Furthermore, Fe-DCPD also exhibited a faster hydrolysis rate, which was up to 2.67 times that of Fe-free DCPD and accelerated Cd's transfer to the stable host mineral, hydroxylapatite. Cd was first caught by the DCPD surface in a weakly crystalline form and then incorporated into the hydroxylapatite structure during crystallization. Based on the X-ray photoelectron spectroscopy and thermogravimetric analysis results, we concluded that the decrease in interstitial water due to Fe incorporation was responsible for accelerating hydrolysis and enhancing Cd immobilization. In all, the incorporation of Fe3+ into DCPD could promote its transformation and improve its Cd uptake capacity. Our results suggest that Fe-DCPD could be a promising candidate for environmental remediation.
Collapse
Affiliation(s)
- Jianan Guo
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiaohang Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Maolin Wang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
9
|
The Influence of Different Classes of Amino Acids on Calcium Phosphates Seeded Growth. MATERIALS 2020; 13:ma13214798. [PMID: 33121165 PMCID: PMC7662258 DOI: 10.3390/ma13214798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022]
Abstract
Amino acids (AAs) attract attention for elucidating the role of proteins in biomineralization and the preparation of functionalized biomaterials. The influence that AAs exert on calcium phosphate (CaP) mineralization is still not completely understood, as contradictory results have been reported. In this paper, the influence of the addition of different classes of AAs, charged (L-aspartic acid, Asp; L-lysine, Lys), polar (L-asparagine, Asn; L-serine, Ser; L-tyrosine, Tyr), and non-polar (L-phenylalanine, Phe), on CaP growth in the presence of octacalcium phosphate (OCP) and calcium hydrogenphosphate dihydrate (DCPD) seeds was investigated. In control systems (without AAs), a calcium-deficient apatite (CaDHA) layer was formed on the surface of OCP, while a mixture of CaDHA and OCP in the form of spherical aggregates was formed on the surface of DCPD crystals. Charged and non-polar promoted, while polar AAs inhibited CaDHA formation on the OCP seeds. In the case of DCPD, Lys, Asp, and Phe promoted CaP formation, while the influence of other AAs was negligible. The most efficient promotor of precipitation in both cases was non-polar Phe. No significant influence of AAs on the composition and morphology of precipitates was observed. The obtained results are of interest for understanding biomineralization processes and additive controlled material synthesis.
Collapse
|
10
|
Zavala-Corrales JL, Balandrán-Quintana RR, Azamar-Barrios JA, Mendoza-Wilson AM, Hurtado-Solórzano PG, Pompa-Redondo JS. Wheat bran extracts as biomineralization scaffolds: An exploratory study leading to aqueous solution synthesis of spheroidal brushite particles. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Li Z, Ren Q, Cui J, Hu D, Tian T, He T, Wang K, Jiang W, Zhang L. Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. CrystEngComm 2020. [DOI: 10.1039/c9ce01925a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy of HAP nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide named QP5 was compared systematically. Poly-amino acids and QP5 regulated HAP nucleation and enamel remineralization more effectively.
Collapse
Affiliation(s)
- Zhongcheng Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Qian Ren
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Die Hu
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Tian Tian
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Ting He
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Kun Wang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Wentao Jiang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| |
Collapse
|
12
|
Bystrom JL, Pujari-Palmer M. Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro. J Funct Biomater 2019; 10:E54. [PMID: 31783637 PMCID: PMC6963472 DOI: 10.3390/jfb10040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.
Collapse
Affiliation(s)
| | - Michael Pujari-Palmer
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden;
| |
Collapse
|