1
|
Papynov EK, Shichalin OO, Belov AA, Buravlev IY, Mayorov VY, Fedorets AN, Buravleva AA, Lembikov AO, Gritsuk DV, Kapustina OV, Kornakova ZE. CaSiO 3-HAp Metal-Reinforced Biocomposite Ceramics for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14050259. [PMID: 37233369 DOI: 10.3390/jfb14050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Reconstructive and regenerative bone surgery is based on the use of high-tech biocompatible implants needed to restore the functions of the musculoskeletal system of patients. Ti6Al4V is one of the most widely used titanium alloys for a variety of applications where low density and excellent corrosion resistance are required, including biomechanical applications (implants and prostheses). Calcium silicate or wollastonite (CaSiO3) and calcium hydroxyapatite (HAp) is a bioceramic material used in biomedicine due to its bioactive properties, which can potentially be used for bone repair. In this regard, the research investigates the possibility of using spark plasma sintering technology to obtain new CaSiO3-HAp biocomposite ceramics reinforced with a Ti6Al4V titanium alloy matrix obtained by additive manufacturing. The phase and elemental compositions, structure, and morphology of the initial CaSiO3-HAp powder and its ceramic metal biocomposite were studied by X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis methods. The spark plasma sintering technology was shown to be efficient for the consolidation of CaSiO3-HAp powder in volume with a Ti6Al4V reinforcing matrix to obtain a ceramic metal biocomposite of an integral form. Vickers microhardness values were determined for the alloy and bioceramics (~500 and 560 HV, respectively), as well as for their interface area (~640 HV). An assessment of the critical stress intensity factor KIc (crack resistance) was performed. The research result is new and represents a prospect for the creation of high-tech implant products for regenerative bone surgery.
Collapse
Affiliation(s)
- Evgeniy K Papynov
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Oleg O Shichalin
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Anton A Belov
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Igor Yu Buravlev
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Vitaly Yu Mayorov
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Alexander N Fedorets
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | | | - Alexey O Lembikov
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Danila V Gritsuk
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Olesya V Kapustina
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Zlata E Kornakova
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
3
|
Apanasevich V, Papynov E, Plekhova N, Zinoviev S, Kotciurbii E, Stepanyugina A, Korshunova O, Afonin I, Evdokimov I, Shichalin O, Bardin A, Nevozhai V, Polezhaev A. Morphological Characteristics of the Osteoplastic Potential of Synthetic CaSiO 3/HAp Powder Biocomposite. J Funct Biomater 2020; 11:jfb11040068. [PMID: 32977458 PMCID: PMC7712391 DOI: 10.3390/jfb11040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
The study describes the influence of synthetic CaSiO3/HAp powder biocomposite on the process of regeneration in osseous tissue in the alveolar ridges in terms of the morphological characteristics of the osteoplastic potential. The authors investigated the osteoinduction and osteoconduction “in vivo” processes during bone tissue regeneration in the mandible defect area of an experimental animal (rabbit). The possibility of angiogenesis in the graft as an adaptation factor was studied in the process of bone tissue regeneration. The results of the histological study that included the qualitative parameters of bone tissue regeneration, the morphometric parameters (microarchitectonics) of the bone, the parameters of osteosynthesis (thickness of the osteoid plates), and resorption (volume density of the eroded surface) were presented. The results allowed the authors to characterize the possibility of the practical adaptation for synthetic powder biocomposite as an osteoplastic graft for the rehabilitation of osseous defects in dentistry.
Collapse
Affiliation(s)
- Vladimir Apanasevich
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Evgeniy Papynov
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia;
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
- Correspondence:
| | - Nataliay Plekhova
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Sergey Zinoviev
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Evgeniy Kotciurbii
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Alexandra Stepanyugina
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Oksana Korshunova
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Igor Afonin
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Ivan Evdokimov
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
| | - Oleg Shichalin
- Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russia;
- Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690091, Russia;
| | - Artem Bardin
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Vladimir Nevozhai
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| | - Alexandr Polezhaev
- Central Research Laboratory, Institute of Surgery, Pacific State Medical University, 2, Ostryakov Aven., Vladivostok 690990, Russia; (V.A.); (N.P.); (S.Z.); (E.K.); (A.S.); (O.K.); (I.A.); (A.B.); (V.N.); (A.P.)
| |
Collapse
|