1
|
Kharissova OV, Nikolaev AL, Kharisov BI, Dorozhkin SV, López I, Méndez YP, de la Fuente IG. Enzymatic synthesis of calcium phosphates: A review. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101214. [DOI: 10.1016/j.nanoso.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
2
|
Varga M, Kresakova L, Danko J, Vdoviakova K, Humenik F, Rusnak P, Giretova M, Spakovska T, Andrejcakova Z, Kadasi M, Vrzgula M, Criepokova Z, Ivaskova S, Korim F, Medvecky L. Tetracalcium Phosphate Biocement Hardened with a Mixture of Phytic Acid-Phytase in the Healing Process of Osteochondral Defects in Sheep. Int J Mol Sci 2023; 24:15690. [PMID: 37958674 PMCID: PMC10647259 DOI: 10.3390/ijms242115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaline articular cartilage has unique physiological, biological, and biomechanical properties with very limited self-healing ability, which makes the process of cartilage regeneration extremely difficult. Therefore, research is currently focused on finding new and potentially better treatment options. The main objective of this in vivo study was to evaluate a novel biocement CX consisting of tetracalcium phosphate-monetit biocement hardened with a phytic acid-phytase mixture for the regeneration of osteochondral defects in sheep. The results were compared with tetracalcium phosphate-monetit biocement with classic fast-setting cement systems and untreated defects. After 6 months, the animals were sacrificed, and the samples were evaluated using macroscopic and histologic methods as well as X-ray, CT, and MR-imaging techniques. In contrast to the formation of fibrous or fibrocartilaginous tissue on the untreated side, treatment with biocements resulted in the formation of tissue with a dominant hyaline cartilage structure, although fine fibres were present (p < 0.001). There were no signs of pathomorphological changes or inflammation. Continuous formation of subchondral bone and hyaline cartilage layers was present even though residual biocement was observed in the trabecular bone. We consider biocement CX to be highly biocompatible and suitable for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Jan Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Filip Humenik
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Pavol Rusnak
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (M.G.); (L.M.)
| | - Tatiana Spakovska
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (P.R.); (T.S.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Marko Vrzgula
- Department of Anatomy, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia;
| | - Zuzana Criepokova
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Sonja Ivaskova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Filip Korim
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (F.H.); (S.I.); (F.K.)
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (M.G.); (L.M.)
| |
Collapse
|
3
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
4
|
Ewald A, Fuchs A, Boegelein L, Grunz JP, Kneist K, Gbureck U, Hoelscher-Doht S. Degradation and Bone-Contact Biocompatibility of Two Drillable Magnesium Phosphate Bone Cements in an In Vivo Rabbit Bone Defect Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4650. [PMID: 37444964 DOI: 10.3390/ma16134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The use of bone-cement-enforced osteosynthesis is a growing topic in trauma surgery. In this context, drillability is a desirable feature for cements that can improve fracture stability, which most of the available cement systems lack. Therefore, in this study, we evaluated a resorbable and drillable magnesium-phosphate (MgP)-based cement paste considering degradation behavior and biocompatibility in vivo. Two different magnesium-phosphate-based cement (MPC) pastes with different amounts of phytic acid (IP 6) as setting retarder (MPC 22.5 and MPC 25) were implanted in an orthotopic defect model of the lateral femoral condyle of New Zealand white rabbits for 6 weeks. After explantation, their resorption behavior and material characteristics were evaluated by means of X-ray diffraction (XRD), porosimetry measurement, histological staining, peripheral quantitative computed tomography (pQCT), cone-beam computed tomography (CBCT) and biomechanical load-to-failure tests. Both cement pastes displayed comparable results in mechanical strength and resorption kinetics. Bone-contact biocompatibility was excellent without any signs of inflammation. Initial resorption and bone remodeling could be observed. MPC pastes with IP 6 as setting retardant have the potential to be a valuable alternative in distinct fracture patterns. Drillability, promising resorption potential and high mechanical strength confirm their suitability for use in clinical routine.
Collapse
Affiliation(s)
- Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Lasse Boegelein
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Oberduerrbacher Street 6, 97080 Wuerzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Wuerzburg, Oberduerrbacher Street 6, 97080 Wuerzburg, Germany
| | - Karl Kneist
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany
| | - Stefanie Hoelscher-Doht
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Oberduerrbacher Street 6, 97080 Wuerzburg, Germany
| |
Collapse
|
5
|
Chen X, Li H, Ma Y, Jiang Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023; 28:4790. [PMID: 37375345 DOI: 10.3390/molecules28124790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-based biomaterials have also been comprehensively summarized. Finally, the applications and perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting typical examples.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Huizhang Li
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yinhua Ma
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. NPJ Regen Med 2023; 8:11. [PMID: 36841873 PMCID: PMC9968336 DOI: 10.1038/s41536-023-00286-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Maxillofacial hard tissue defects caused by trauma or infection often affect craniofacial function. Taking the natural hard tissue structure as a template, constructing an engineered tissue repair module is an important scheme to realize the functional regeneration and repair of maxillofacial hard tissue. Here, inspired by the biomineralization process, we constructed a composite mineral matrix hydrogel PAA-CMC-TDM containing amorphous calcium phosphates (ACPs), polyacrylic acid (PAA), carboxymethyl chitosan (CMC) and dentin matrix (TDM). The dynamic network composed of Ca2+·COO- coordination and ACPs made the hydrogel loaded with TDM, and exhibited self-repairing ability and injectability. The mechanical properties of PAA-CMC-TDM can be regulated, but the functional activity of TDM remains unaffected. Cytological studies and animal models of hard tissue defects show that the hydrogel can promote the odontogenesis or osteogenic differentiation of mesenchymal stem cells, adapt to irregular hard tissue defects, and promote in situ regeneration of defective tooth and bone tissues. In summary, this paper shows that the injectable TDM hydrogel based on biomimetic mineralization theory can induce hard tissue formation and promote dentin/bone regeneration.
Collapse
|
7
|
Stulajterova R, Giretova M, Medvecky L, Sopcak T, Luptakova L, Girman V. The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8212. [PMID: 36431697 PMCID: PMC9692293 DOI: 10.3390/ma15228212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The effect of nanosilica on the microstructure setting process of tetracalcium phosphate/nanomonetite calcium phosphate cement mixture (CPC) with the addition of 5 wt% of magnesium pyrophosphate (assigned as CT5MP) and osteogenic differentiation of mesenchymal stem cells cultured in cement extracts were studied. A more compact microstructure was observed in CT5MP cement with 0.5 wt% addition of nanosilica (CT5MP1Si) due to the synergistic effect of Mg2P2O7 particles, which strengthened the cement matrix and nanosilica, which supported gradual growth and recrystallization of HAP particles to form compact agglomerates. The addition of 0.5 wt% of nanosilica to CT5MP cement caused an increase in CS from 18 to 24 MPa while the setting time increased almost twofold. It was verified that adding nanosilica to CPC cement, even in a low amount (0.5 and 1 wt% of nanosilica), positively affected the injectability of cement pastes and differentiation of cells with upregulation of osteogenic markers in cells cultured in cement extracts. Results revealed appropriate properties of these types of cement for filling bone defects.
Collapse
Affiliation(s)
- Radoslava Stulajterova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Tibor Sopcak
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Vladimir Girman
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
8
|
Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - Path to osteoinductivity. Bioact Mater 2022; 17:109-124. [PMID: 35386461 PMCID: PMC8964990 DOI: 10.1016/j.bioactmat.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
With the increase of global population, people's life expectancy is growing as well. Humans tend to live more active lifestyles and, therefore, trauma generated large defects become more common. Instances of tumour resection or pathological conditions and complex orthopaedic issues occur more frequently increasing necessity for bone substitutes. Composition of calcium phosphate cements (CPCs) is comparable to the chemical structure of bone minerals. Their ability to self-set and resorb in vivo secures a variety of potential applications in bone regeneration. Despite the years-long research and several products already reaching the market, finding the right properties for calcium phosphate cement to be osteoinductive and both injectable and suitable for clinical use is still a sudoku. This article is focused on injectable, porous CPCs, reviewing the latest developments on the path toward finding osteoinductive material, which is suitable for injection.
Collapse
Affiliation(s)
- Agneta Vezenkova
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|