1
|
Parascandolo A, Di Tolla MF, Liguoro D, Lecce M, Misso S, Micieli F, Ambrosio MR, Cabaro S, Beguinot F, Pelagalli A, D'Esposito V, Formisano P. Human Platelet-Rich Plasma Regulates Canine Mesenchymal Stem Cell Migration through Aquaporins. Stem Cells Int 2023; 2023:8344259. [PMID: 37223543 PMCID: PMC10202607 DOI: 10.1155/2023/8344259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds. However, the collection of canine PRP is not always feasible. In this study, we investigated the effect of human PRP (hPRP) on canine MSCs (cMSCs). We isolated cMSCs and observed that hPRP did not modify the expression levels of the primary class of major histocompatibility complex genes. However, hPRP was able to increase cMSC viability and migration by at least 1.5-fold. hPRP treatment enhanced both Aquaporin (AQP) 1 and AQP5 protein levels, and their inhibition by tetraethylammonium chloride led to a reduction of PRP-induced migration of cMSCs. In conclusion, we have provided evidence that hPRP supports cMSC survival and may promote cell migration, at least through AQP activation. Thus, hPRP may be useful in canine tissue regeneration and repair, placing as a promising tool for veterinary therapeutic approaches.
Collapse
Affiliation(s)
- Alessia Parascandolo
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Michele Francesco Di Tolla
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Liguoro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Manuela Lecce
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, Azienda Sanitaria Locale Caserta, Caserta, Italy
| | - Fabiana Micieli
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80137 Naples, Italy
| | - Maria Rosaria Ambrosio
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- URT “Genomic of Diabetes”, Institute for Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (IEOS-CNR), Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Torres-Torrillas M, Damiá E, Peláez P, Miguel-Pastor L, Cuervo B, Cerón JJ, Carrillo JM, Rubio M, Sopena JJ. Intra-osseous infiltration of adipose mesenchymal stromal cells and plasma rich in growth factors to treat acute full depth cartilage defects in a rabbit model: Serum osteoarthritis biomarkers and macroscopical assessment. Front Vet Sci 2022; 9:1057079. [PMID: 36605767 PMCID: PMC9807624 DOI: 10.3389/fvets.2022.1057079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Intra-articular infiltration of plasma rich in growth factors (PRGF) and adipose mesenchymal stromal cells (AMSCs) are known to inhibit osteoarthritis progression. However, in severely affected patients, the treatment cannot reach the deeper layers of the articular cartilage; thus, its potential is limited. To overcome this limitation, intra-osseous infiltrations have been suggested. The purpose of this study is to assess the impact of intra-osseous infiltration therapies on serum biomarkers of osteoarthritis and to assess cartilage regeneration macroscopically. Materials and methods A total of 80 rabbits were divided into four groups based on the intra-osseous treatment administered on the day of surgery: control, PRGF, AMSCs and a combination of PRGF + AMSCs. In addition, all groups received a single intra-articular administration of PRGF on the same day. Serum biomarker levels were measured before infiltration and 28-, 56-, and 84-days post infiltration, and macroscopical assessment was conducted at 56- and 84-days follow-up post infiltration. Results In the PRGF + AMSCs group, significantly lower concentrations of hyaluronic acid and type II collagen cleavage neoepitope were recorded at all time points during the study, followed by PRGF, AMSCs and control groups. Regarding macroscopical assessment, lower scores were obtained in PRGF + AMSCs group at all study times. Discussion The results suggest that the combination of intra-articular PRGF with intra-osseous PRGF or AMSCs achieves better results in rabbits with acute chondral defects and that intra-osseous infiltration is a safe procedure.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - José J. Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - José M. Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,*Correspondence: Mónica Rubio ✉
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain,García Cugat Foundation, CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
3
|
Olsson DC, Teixeira BL, Jeremias TDS, Réus JC, De Luca Canto G, Porporatti AL, Trentin AG. Administration of mesenchymal stem cells from adipose tissue at the hip joint of dogs with osteoarthritis: A systematic review. Res Vet Sci 2020; 135:495-503. [PMID: 33280823 DOI: 10.1016/j.rvsc.2020.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
This systematic review aimed to determine the effects of intra-articular administration of mesenchymal stem cells from adipose tissue in dogs with hip joint osteoarthritis (OA). Clinical trials were systematically reviewed, using PubMed, EMBASE, Cochrane Library, LILACS, Web of Science, Scopus, Open Grey, Google Scholar, and ProQuest Dissertation and Thesis without publication year restrictions. References were screened and selected based on predefined eligibility criteria by two independent reviewers, according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Clinical outcomes were assessed quantitatively using clinical pain scores, physical examination, imaging examination, questionnaire responses, pain in manipulation, gait analysis, range of joint motion, and adverse effects. The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist. Out of 1483 articles, six met the inclusion criteria for qualitative analysis, with two randomized controlled trials and four before-and-after studies. All studies reported significantly better clinical outcomes in the adipose tissue stem cells (ADSC) group with improvements in pain and function and decreased evidence of hip OA. The risk of bias was categorized as high in the before-and-after studies and moderate to high in the randomized studies. The studies were considered heterogeneous owing to clinical results and methodology. Because of this heterogeneity, it was not possible to perform meta-analysis. Assessments of ADSC reports yielded positive clinical effects that showed improvements in pain and function and decreased evidence of hip osteoarthritis. More high-level, larger-cohort dog studies that utilize standardized protocols are needed.
Collapse
Affiliation(s)
- Débora Cristina Olsson
- Department of Veterinary Medicine, Federal Institute Catarinense, Concórdia, SC, Brazil.
| | - Bianca Luise Teixeira
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Talita Da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jéssica Conti Réus
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Graziela De Luca Canto
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - André Luis Porporatti
- Brazilian Centre for Evidence Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L, Sopena JJ. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int J Mol Sci 2019; 20:ijms20123105. [PMID: 31242644 PMCID: PMC6627452 DOI: 10.3390/ijms20123105] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.
Collapse
Affiliation(s)
- Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Monica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Elena Damia
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Belen Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Joaquin J Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
5
|
Combined plasma rich in growth factors and adipose-derived mesenchymal stem cells promotes the cutaneous wound healing in rabbits. BMC Vet Res 2018; 14:288. [PMID: 30241533 PMCID: PMC6151009 DOI: 10.1186/s12917-018-1577-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The use of Plasma Rich in Growth Factors (PRGF) and Adipose Derived Mesenchymal Stem Cells (ASCs) are today extensively studied in the field of regenerative medicine. In recent years, human and veterinary medicine prefer to avoid using traumatic techniques and choose low or non-invasive procedures. The objective of this study was to evaluate the efficacy of PRGF, ASCs and the combination of both in wound healing of full-thickness skin defects in rabbits. With this purpose, a total of 144 rabbits were used for this study. The animals were divided in three study groups of 48 rabbits each depending on the administered treatment: PRGF, ASCs, and PGRF+ASCs. Two wounds of 8 mm of diameter and separated from each other by 20 mm were created on the back of each rabbit: the first was treated with saline solution, and the second with the treatment assigned for each group. Macroscopic and microscopic evolution of wounds was assessed at 1, 2, 3, 5, 7 and 10 days post-surgery. With this aim, 8 animals from each treatment group and at each study time were euthanized to collect wounds for histopathological study. RESULTS Wounds treated with PRGF, ASCs and PRGF+ASCs showed significant higher wound healing and epithelialization rates, more natural aesthetic appearance, significant lower inflammatory response, significant higher collagen deposition and angiogenesis compared with control wounds. The combined treatment PRGF+ASCs showed a significant faster cutaneous wound healing process. CONCLUSIONS The combined treatment PRGF+ASCs showed the best results, suggesting this is the best choice to enhance wound healing and improve aesthetic results in acute wounds.
Collapse
|
6
|
Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells. Stem Cells Int 2017; 2017:5946527. [PMID: 29270200 PMCID: PMC5705873 DOI: 10.1155/2017/5946527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.
Collapse
|
7
|
Cuervo B, Rubio M, Sopena J, Dominguez JM, Vilar J, Morales M, Cugat R, Carrillo JM. Hip osteoarthritis in dogs: a randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. Int J Mol Sci 2014; 15:13437-60. [PMID: 25089877 PMCID: PMC4159804 DOI: 10.3390/ijms150813437] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs) versus plasma rich in growth factors (PRGF) as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA). Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM), owner’s and veterinary investigator visual analogue scale (VAS), and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.
Collapse
Affiliation(s)
- Belen Cuervo
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Monica Rubio
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Joaquin Sopena
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| | - Juan Manuel Dominguez
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain.
| | - Jose Vilar
- Department of Animal Medicine and Surgery, University of Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain.
| | - Manuel Morales
- Department of Animal Medicine and Surgery, University of Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain.
| | - Ramón Cugat
- Garcia Cugat Foundation CEU UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain.
| | - Jose Maria Carrillo
- Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain.
| |
Collapse
|
8
|
Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, Cugat R, Sopena J, Carrillo JM. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res 2014; 10:143. [PMID: 24984756 PMCID: PMC4085658 DOI: 10.1186/1746-6148-10-143] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
Background Regenerative medicine using Mesenchymal Stem Cells (MSC) alone or combined with Plasma Rich in Growth Factors (PRGF) is a rapidly growing area of clinical research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify and quantify the efficacy of different therapeutic strategies for the treatment of OA in dogs including MSC associated to PRGF, but never with AD-MSC alone. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Ten lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved within the first three months post-treatment in the OA group, increasing 9% and 2.5% body weight, respectively, at day 30. After this, the effect seems to decrease reaching initial values. Conclusion Intraarticular ADMSC therapy objectively improved limb function in dogs with hip OA. The duration of maximal effect was less than 3 months.
Collapse
Affiliation(s)
- Jose M Vilar
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas, 35413 Las Palmas, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vilar JM, Morales M, Santana A, Spinella G, Rubio M, Cuervo B, Cugat R, Carrillo JM. Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs. BMC Vet Res 2013; 9:131. [PMID: 23819757 PMCID: PMC3716942 DOI: 10.1186/1746-6148-9-131] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/24/2013] [Indexed: 12/26/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cell (ADMSC) therapy in regenerative medicine is a rapidly growing area of research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify the efficacy of different therapeutic strategies for the treatment of OA in dogs, but never with AD-MSC. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Eight lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved after treatment of the OA groups, reaching 53.02% and 14.84% of body weight, respectively, at day 180, compared with only 43.56% and 12.16% at day 0. Conclusion This study objectively demonstrated that intraarticular ADMSC therapy resulted in reduced lameness due to OA.
Collapse
Affiliation(s)
- Jose M Vilar
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas 35413 Las Palmas, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol 2013; 31:364-74. [DOI: 10.1016/j.tibtech.2013.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/20/2022]
|
11
|
Valdes-Sánchez T, Rodriguez-Jimenez FJ, García-Cruz DM, Escobar-Ivirico JL, Alastrue-Agudo A, Erceg S, Monleón M, Moreno-Manzano V. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J Tissue Eng Regen Med 2013; 9:734-9. [PMID: 23533014 DOI: 10.1002/term.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 01/30/2023]
Abstract
Spinal cord injury (SCI) is a cause of paralysis. Although some strategies have been proposed to palliate the severity of this condition, so far no effective therapies have been found to reverse it. Recently, we have shown that acute transplantation of ependymal stem/progenitor cells (epSPCs), which are spinal cord-derived neural precursors, rescue lost neurological function after SCI in rodents. However, in a chronic scenario with axon repulsive reactive scar, cell transplantation alone is not sufficient to bridge a spinal cord lesion, therefore a combinatorial approach is necessary to fill cavities in the damaged tissue with biomaterial that supports stem cells and ensures that better neural integration and survival occur. Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) is a monomer [obtained as a result of ε-caprolactone and 2-hydroxyethyl methacrylate (HEMA) ring opening/esterification reaction], which can be processed to obtain a porous non-toxic 3D scaffold that shows good biocompatibility with epSPC cultures. epSPCs adhere to the scaffolds and maintain the ability to expand the culture through the biomaterial. However, a significant reduction of cell viability of epSPCs after 6 days in vitro was detected. FM19G11, which has been shown to enhance self-renewal properties, rescues cell viability at 6 days. Moreover, addition of FM19G11 enhances the survival rates of mature neurons from the dorsal root ganglia when cultured with epSPCs on 3D CLMA scaffolds. Overall, CLMA porous scaffolds constitute a good niche to support neural cells for cell transplantation approaches that, in combination with FM19G11, offer a new framework for further trials in spinal cord regeneration.
Collapse
Affiliation(s)
- Teresa Valdes-Sánchez
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| | | | - Dunia M García-Cruz
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | | | - Ana Alastrue-Agudo
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| | - Slaven Erceg
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Manuel Monleón
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - Victoria Moreno-Manzano
- Neuronal Regeneration Laboratory, Centro de Investigación Principe Felipe (CIPF), Valencia, Spain
| |
Collapse
|