1
|
Shankar S, Deshmukh R, Pingali T, Sonar R, Basu S, Singh V. Experimental models for keratoconus: Insights and challenges. Exp Eye Res 2024; 248:110122. [PMID: 39395558 DOI: 10.1016/j.exer.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus, a progressive corneal disorder characterized by the thinning and conical protrusion of the cornea because of collagen degradation, poses significant challenges to both clinicians and researchers. Most successful animal models of keratoconus are based on genetic mutations and knock-outs in mice and rats that hinder normal corneal stromal architecture, thickness, or strength. While mice and rat models are suitable to study the molecular mechanism and physiological changes to the cornea, they are not suitable for experimental research; especially for surgical interventions like: deep anterior lamellar keratoplasty (DALK), stromal lenticule addition keratoplasty, and other advanced therapies. This review article comprehensively examines recent advancements in experimental models for keratoconus, focusing on their potential for translational research and the challenges ahead. It explores the historical context of experimental models, focusing on animal-based models, mainly rabbits in particular. These advancements enable researchers to mimic the biomechanical and biochemical alterations observed in keratoconic corneas. While these models offer valuable insights into disease mechanisms and treatment development, several challenges remain in transforming experimental findings into clinical applications.
Collapse
Affiliation(s)
- Sujithra Shankar
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | | | - Tejaswini Pingali
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | - Rohini Sonar
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India; The Shantilal Shanghvi Cornea Institute, Hyderabad, India.
| | - Vivek Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
2
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Boroumand S, Rahmani M, Sigaroodi F, Ganjoury C, Parandakh A, Bonakdar A, Khani MM, Soleimani M. The landscape of clinical trials in corneal regeneration: A systematic review of tissue engineering approaches in corneal disease. J Biomed Mater Res B Appl Biomater 2024; 112:e35449. [PMID: 39032135 DOI: 10.1002/jbm.b.35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Bonakdar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Ali ZM, Wang X, Shibru MG, Alhosani M, Alfadhli N, Alnuaimi A, Murtaza FF, Zaid A, Khaled R, Salih AE, Vurivi H, Daoud S, Butt H, Chan V, Pantic IV, Paunovic J, Corridon PR. A sustainable approach to derive sheep corneal scaffolds from stored slaughterhouse waste. Regen Med 2024; 19:303-315. [PMID: 39177571 PMCID: PMC11346552 DOI: 10.1080/17460751.2024.2357499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/10/2024] [Indexed: 08/24/2024] Open
Abstract
Aim: The escalating demand for corneal transplants significantly surpasses the available supply. To bridge this gap, we concentrated on ethical and sustainable corneal grafting sources. Our objective was to create viable corneal scaffolds from preserved slaughterhouse waste.Materials & methods: Corneas were extracted and decellularized from eyeballs that had been refrigerated for several days. These scaffolds underwent evaluation through DNA quantification, histological analysis, surface tension measurement, light propagation testing, and tensile strength assessment.Results: Both the native and acellular corneas (with ~90% DNA removed using a cost-effective and environmentally friendly surfactant) maintained essential optical and biomechanical properties for potential clinical use.Conclusion: Our method of repurposing slaughterhouse waste, stored at 4°C for several days, to develop corneal scaffolds offers a sustainable and economical alternative xenograft model.
Collapse
Affiliation(s)
- Zehara M Ali
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Xinyu Wang
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Meklit G Shibru
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Maha Alhosani
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Nouf Alfadhli
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aysha Alnuaimi
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Fiza F Murtaza
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aisha Zaid
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Rodaina Khaled
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Ahmed E Salih
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi,UAE
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Vincent Chan
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Igor V Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, 3498838,Israel
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
| | - Peter R Corridon
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| |
Collapse
|
6
|
Procházková A, Poláchová M, Dítě J, Netuková M, Studený P. Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature. J Ophthalmol 2024; 2024:1191462. [PMID: 38567029 PMCID: PMC10985644 DOI: 10.1155/2024/1191462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The cornea is one of the most commonly transplanted tissues worldwide. It is used to restore vision when severe visual impairment or blindness occurs in patients with corneal diseases or after trauma. Due to the global shortage of healthy donor corneas, decellularized corneal tissue has significant potential as an alternative to corneal transplantation. It preserves the native and biological ultrastructure of the cornea and, therefore, represents the most promising scaffold. This article discusses different methods of corneal decellularization based on the current literature. We searched PubMed.gov for articles from January 2009 to December 2023 using the following keywords: corneal decellularization, decellularization methods, and corneal transplantation. Although several methods of decellularization of corneal tissue have been reported, a universal standardised protocol of corneal decellularization has not yet been introduced. In general, a combination of decellularization methods has been used for efficient decellularization while preserving the optimal properties of the corneal tissue.
Collapse
Affiliation(s)
- Alexandra Procházková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Martina Poláchová
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Jakub Dítě
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Magdaléna Netuková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| |
Collapse
|
7
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Pantic IV, Cumic J, Valjarevic S, Shakeel A, Wang X, Vurivi H, Daoud S, Chan V, Petroianu GA, Shibru MG, Ali ZM, Nesic D, Salih AE, Butt H, Corridon PR. Computational approaches for evaluating morphological changes in the corneal stroma associated with decellularization. Front Bioeng Biotechnol 2023; 11:1105377. [PMID: 37304146 PMCID: PMC10250676 DOI: 10.3389/fbioe.2023.1105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Decellularized corneas offer a promising and sustainable source of replacement grafts, mimicking native tissue and reducing the risk of immune rejection post-transplantation. Despite great success in achieving acellular scaffolds, little consensus exists regarding the quality of the decellularized extracellular matrix. Metrics used to evaluate extracellular matrix performance are study-specific, subjective, and semi-quantitative. Thus, this work focused on developing a computational method to examine the effectiveness of corneal decellularization. We combined conventional semi-quantitative histological assessments and automated scaffold evaluations based on textual image analyses to assess decellularization efficiency. Our study highlights that it is possible to develop contemporary machine learning (ML) models based on random forests and support vector machine algorithms, which can identify regions of interest in acellularized corneal stromal tissue with relatively high accuracy. These results provide a platform for developing machine learning biosensing systems for evaluating subtle morphological changes in decellularized scaffolds, which are crucial for assessing their functionality.
Collapse
Affiliation(s)
- Igor V. Pantic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
- University of Haifa, Haifa, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jelena Cumic
- Faculty of Medicine, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Svetlana Valjarevic
- Faculty of Medicine, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Xinyu Wang
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dejan Nesic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Wang X, Shakeel A, Salih AE, Vurivi H, Daoud S, Desidery L, Khan RL, Shibru MG, Ali ZM, Butt H, Chan V, Corridon PR. A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste. Front Bioeng Biotechnol 2023; 11:1133122. [PMID: 37180037 PMCID: PMC10168539 DOI: 10.3389/fbioe.2023.1133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Corneal disease is a leading cause of blindness globally that stems from various etiologies. High-throughput platforms that can generate substantial quantities of corneal grafts will be invaluable in addressing the existing global demand for keratoplasty. Slaughterhouses generate substantial quantities of underutilized biological waste that can be repurposed to reduce current environmentally unfriendly practices. Such efforts to support sustainability can simultaneously drive the development of bioartificial keratoprostheses. Methods: Scores of discarded eyes from the prominent Arabian sheep breeds in our surrounding region of the United Arab Emirates (UAE) were repurposed to generate native and acellular corneal keratoprostheses. Acellular corneal scaffolds were created using a whole-eye immersion/agitation-based decellularization technique with a widely available, eco-friendly, and inexpensive 4% zwitterionic biosurfactant solution (Ecover, Malle, Belgium). Conventional approaches like DNA quantification, ECM fibril organization, scaffold dimensions, ocular transparency and transmittance, surface tension measurements, and Fourier-transform infrared (FTIR) spectroscopy were used to examine corneal scaffold composition. Results: Using this high-throughput system, we effectively removed over 95% of the native DNA from native corneas while retaining the innate microarchitecture that supported substantial light transmission (over 70%) after reversing opacity, a well-established hallmark of decellularization and long-term native corneal storage, with glycerol. FTIR data revealed the absence of spectral peaks in the frequency range 2849 cm-1 to 3075 cm-1, indicating the effective removal of the residual biosurfactant post-decellularization. Surface tension studies confirmed the FTIR data by capturing the surfactant's progressive and effectual removal through tension measurements ranging from approximately 35 mN/m for the 4% decellularizing agent to 70 mN/m for elutes highlighting the effective removal of the detergent. Discussion: To our knowledge, this is the first dataset to be generated outlining a platform that can produce dozens of ovine acellular corneal scaffolds that effectively preserve ocular transparency, transmittance, and ECM components using an eco-friendly surfactant. Analogously, decellularization technologies can support corneal regeneration with attributes comparable to native xenografts. Thus, this study presents a simplified, inexpensive, and scalable high-throughput corneal xenograft platform to support tissue engineering, regenerative medicine, and circular economic sustainability.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Desidery
- Department of Civil Infrastructure and Environmental Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
12
|
Choi SY, Kim S, Park KM. Initial Healing Effects of Platelet-Rich Plasma (PRP) Gel and Platelet-Rich Fibrin (PRF) in the Deep Corneal Wound in Rabbits. Bioengineering (Basel) 2022; 9:bioengineering9080405. [PMID: 36004930 PMCID: PMC9405118 DOI: 10.3390/bioengineering9080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Platelet concentrates (PCs), including platelet-rich plasma (PRP) gel and platelet-rich fibrin (PRF), are autologous blood-derived biomaterials containing numerous growth factors. This study aimed to evaluate the initial healing effects of PRP gel and PRF on deep corneal wounds. Thirty-three eyes from New Zealand white rabbits were divided into four groups: group 1, lamellar keratectomy (LK); group 2, LK + commercial porcine small intestinal submucosal membrane (SIS); group 3, LK + SIS + PRP gel; and group 4, LK + SIS + PRF. Postoperative clinical and histological findings were observed for eight weeks. Group 1 showed no neovascularization during the observation period, and incompletely recovered with a thin cornea. Group 2 showed active healing through neovascularization, and a thick cornea was regenerated through the sufficient generation of myofibroblasts. Although group 3 showed a healing effect similar to that of group 2, angiogenesis and subsequent vessel regression were promoted, and corneal opacity improved more rapidly. In group 4, angiogenesis was promoted during initial healing; however, the incidence of complications, such as inflammation, was high, and myofibroblasts were hardly generated in the corneal stroma, which adversely affected remodeling. In conclusion, while PRP gel is a safe surgical material for promoting remodeling through vascular healing and myofibroblast production in deep corneal wounds, the use of PRF is not recommended.
Collapse
Affiliation(s)
- Seo-Young Choi
- Laboratory of Veterinary Ophthalmology, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Ophthalmology, Department of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-43-250-2985
| |
Collapse
|
13
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
14
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
15
|
Yazdanpanah G, Shen X, Nguyen T, Anwar KN, Jeon O, Jiang Y, Pachenari M, Pan Y, Shokuhfar T, Rosenblatt MI, Alsberg E, Djalilian AR. A Light-Curable and Tunable Extracellular Matrix Hydrogel for In Situ Suture-Free Corneal Repair. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2113383. [PMID: 35692510 PMCID: PMC9187264 DOI: 10.1002/adfm.202113383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Mohammad Pachenari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| |
Collapse
|
16
|
Islam MM, Chivu A, AbuSamra DB, Saha A, Chowdhuri S, Pramanik B, Dohlman CH, Das D, Argüeso P, Rajaiya J, Patra HK, Chodosh J. Crosslinker-free collagen gelation for corneal regeneration. Sci Rep 2022; 12:9108. [PMID: 35650270 PMCID: PMC9160259 DOI: 10.1038/s41598-022-13146-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Development of an artificial cornea can potentially fulfil the demand of donor corneas for transplantation as the number of donors is far less than needed to treat corneal blindness. Collagen-based artificial corneas stand out as a regenerative option, having promising clinical outcomes. Collagen crosslinked with chemical crosslinkers which modify the parent functional groups of collagen. However, crosslinkers are usually cytotoxic, so crosslinkers need to be removed from implants completely before application in humans. In addition, crosslinked products are mechanically weak and susceptible to enzymatic degradation. We developed a crosslinker free supramolecular gelation strategy using pyrene conjugated dipeptide amphiphile (PyKC) consisting of lysine and cysteine; in which collagen molecules are intertwined inside the PyKC network without any functional group modification of the collagen. The newly developed collagen implants (Coll-PyKC) are optically transparent and can effectively block UV light, are mechanically and enzymatically stable, and can be sutured. The Coll-PyKC implants support the growth and function of all corneal cells, trigger anti-inflammatory differentiation while suppressing the pro-inflammatory differentiation of human monocytes. Coll-PyKC implants can restrict human adenovirus propagation. Therefore, this crosslinker-free strategy can be used for the repair, healing, and regeneration of the cornea, and potentially other damaged organs of the body.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexandru Chivu
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK
| | - Dina B AbuSamra
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bapan Pramanik
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Claes H Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pablo Argüeso
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK.
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
da Mata Martins TM, de Carvalho JL, da Silva Cunha P, Gomes DA, de Goes AM. Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas. Stem Cell Rev Rep 2022; 18:2522-2534. [PMID: 35247143 DOI: 10.1007/s12015-022-10356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Up to 40% of donor corneas are deemed unsuitable for transplantation, aggravating the shortage of graft tissue. In most cases, the corneal extracellular matrix is intact. Therefore, their decellularization followed by repopulation with autologous cells may constitute an efficient alternative to reduce the amount of discarded tissue and the risk of immune rejection after transplantation. Although induced pluripotent (hiPSCs) and orbital fat-derived stem cells (OFSCs) hold great promise for corneal epithelial (CE) reconstruction, no study to date has evaluated the capacity of decellularized corneas (DCs) to support the attachment and differentiation of these cells into CE-like cells. Here, we recellularize DCs with hiPSCs and OFSCs and evaluate their differentiation potential into CE-like cells using animal serum-free culture conditions. Cell viability and adhesion on DCs were assessed by calcein-AM staining and scanning electron microscopy. Cell differentiation was evaluated by RT-qPCR and immunofluorescence analyses. DCs successfully supported the adhesion and survival of hiPSCs and OFSCs. The OFSCs cultured under differentiation conditions could not express the CE markers, TP63, KRT3, PAX6, and KRT12, while the hiPSCs gave rise to cells expressing high levels of these markers. RT-qPCR data suggested that the DCs provided an inductive environment for CE differentiation of hiPSCs, supporting the expression of PAX6 and KRT12 without the need for any soluble induction factors. Our results open the avenue for future studies regarding the in vivo effects of DCs as carriers for autologous cell transplantation for ocular surface reconstruction.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal, 71966-700, Brazil.,Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Biology, Minas Gerais State University, Avenida Olegário Maciel, 1427, Ubá, Minas Gerais, 36502-002, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
18
|
Yang X, Sun X, Liu J, Huang Y, Peng Y, Xu Y, Ren L. Photo-crosslinked GelMA/collagen membrane loaded with lysozyme as an antibacterial corneal implant. Int J Biol Macromol 2021; 191:1006-1016. [PMID: 34592226 DOI: 10.1016/j.ijbiomac.2021.09.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Corneal transplantation is an effective treatment for corneal blindness. However, it brings risk factors for the occurrence of bacterial keratitis, which can affect the repair effect and even lead to transplantation failure. The difficulty in re-epithelialization is also a main problem faced by corneal transplantation. Herein, a collagen-GelMA composite membrane containing lysozyme (CGL) was developed as an antibacterial corneal implant to fill stromal defect and support re-epithelialization. Characterizations of physicochemical properties and in vitro biocompatibility revealed that the composite membranes have proper water content, light transmittance and mechanical strength as well as good biocompatibility. Particularly, the cell adhesion force and adhesion-related genes expression were evaluated and exhibited an improvement after the addition of GelMA. Furthermore, the formed CGL membrane could continuously release lysozyme and exhibited a bactericidal rate of 96% and 64% after 2 h and 72 h, respectively. The results demonstrated that this CGL membrane has promising application in corneal repair.
Collapse
Affiliation(s)
- Xiangjing Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yuehai Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China.
| |
Collapse
|
19
|
Mijanović O, Pylaev T, Nikitkina A, Artyukhova M, Branković A, Peshkova M, Bikmulina P, Turk B, Bolevich S, Avetisov S, Timashev P. Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. MICROMACHINES 2021; 12:mi12111336. [PMID: 34832752 PMCID: PMC8618371 DOI: 10.3390/mi12111336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell-transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host-graft interaction dynamics towards proper integration and long-term functionality of the transplant.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Correspondence:
| | - Timofey Pylaev
- Saratov Medical State University N.A. V.I. Razumovsky, 112 Bolshaya Kazachya St., 410012 Saratov, Russia;
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Angelina Nikitkina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Margarita Artyukhova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Ana Branković
- Department of Forensic Engineering, University of Criminal Investigation and Police Studies, 196 Cara Dušana St., Belgrade 11000, Serbia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Boris Turk
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
| | - Sergei Avetisov
- Department of Eye Diseases, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
- Research Institute of Eye Diseases, 11 Rossolimo St., 119021 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
20
|
Liu XN, Mi SL, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol 2021; 14:448-455. [PMID: 33747824 DOI: 10.18240/ijo.2021.03.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal stroma-derived mesenchymal stem cells (CS-MSCs) are mainly distributed in the anterior part of the corneal stroma near the corneal limbal stem cells (LSCs). CS-MSCs are stem cells with self-renewal and multidirectional differentiation potential. A large amount of data confirmed that CS-MSCs can be induced to differentiate into functional keratocytes in vitro, which is the motive force for maintaining corneal transparency and producing a normal corneal stroma. CS-MSCs are also an important component of the limbal microenvironment. Furthermore, they are of great significance in the reconstruction of ocular surface tissue and tissue engineering for active biocornea construction. In this paper, the localization and biological characteristics of CS-MSCs, the use of CS-MSCs to reconstruct a tissue-engineered active biocornea, and the repair of the limbal and matrix microenvironment by CS-MSCs are reviewed, and their application prospects are discussed.
Collapse
Affiliation(s)
- Xian-Ning Liu
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| | - Sheng-Li Mi
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China.,Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yun Chen
- Open FIESTA Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China
| | - Yao Wang
- Department of Ophthalmology, First Hospital of Xi'an; Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
21
|
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13030319. [PMID: 33671011 PMCID: PMC7997321 DOI: 10.3390/pharmaceutics13030319] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.
Collapse
|
22
|
Aghamollaei H, Hashemian H, Safabakhsh H, Halabian R, Baghersad M, Jadidi K. Safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-Derived Mesenchymal Stem Cells in an experimental animal model. Exp Eye Res 2021; 205:108451. [PMID: 33539864 DOI: 10.1016/j.exer.2021.108451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
The present study was conducted to evaluate safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-derived Mesenchymal Stem Cells (WJSC) in an experimental animal model. Human corneal lenticules were decellularized with a rate of about 97% with an acceptable lack of cytotoxicity and relatively intact ultrastructure of the lenticules. 12 rabbits underwent unilateral stromal pocketing with implantation of decellularized lenticules. Implantation was performed for 6 rabbits along with graft recellularization with WJSCs. Rabbits were euthanized after 1 month (n = 6) and 3 months (n = 6) to evaluate progression of graft bio-integration. No clinical rejection sign was detected during the study. Histopathological analysis showed that, grafts were integrated well with the least distortion of surrounding collagen bundles. After 3 months, labeled WJCS was detected representing viability of stem cells in the host. Increased expression of keratocyte-specific markers showed the potential of recruiting WJSCs as keratocyte progenitor cells to reinforce corneal ultrastructure.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Safabakhsh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Baghersad
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kheirjou R, Rad JS, Khosroshahi AF, Roshangar L. The useful agent to have an ideal biological scaffold. Cell Tissue Bank 2020; 22:225-239. [PMID: 33222022 DOI: 10.1007/s10561-020-09881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Tissue engineering which is applied in regenerative medicine has three basic components: cells, scaffolds and growth factors. This multidisciplinary field can regulate cell behaviors in different conditions using scaffolds and growth factors. Scaffolds perform this regulation with their structural, mechanical, functional and bioinductive properties and growth factors by attaching to and activating their receptors in cells. There are various types of biological extracellular matrix (ECM) and polymeric scaffolds in tissue engineering. Recently, many researchers have turned to using biological ECM rather than polymeric scaffolds because of its safety and growth factors. Therefore, selection the right scaffold with the best properties tailored to clinical use is an ideal way to regulate cell behaviors in order to repair or improve damaged tissue functions in regenerative medicine. In this review we first divided properties of biological scaffold into intrinsic and extrinsic elements and then explain the components of each element. Finally, the types of scaffold storage methods and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran.
| |
Collapse
|
24
|
Hancox Z, Heidari Keshel S, Yousaf S, Saeinasab M, Shahbazi MA, Sefat F. The progress in corneal translational medicine. Biomater Sci 2020; 8:6469-6504. [PMID: 33174878 DOI: 10.1039/d0bm01209b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cornea tissue is in high demand by tissue donation centres globally, and thus tissue engineering cornea, which is the main topic of corneal translational medicine, can serve as a limitless alternative to a donated human cornea tissue. Tissue engineering aims to produce solutions to the challenges associated with conventional cornea tissue, including transplantation and use of human amniotic membrane (HAM), which have issues with storage and immune rejection in patients. Accordingly, by carefully selecting biomaterials and fabrication methods to produce these therapeutic tissues, the demand for cornea tissue can be met, with an improved healing outcome for recipients with less associated harmful risks. In this review paper, we aim to present the recent advancements in the research and clinical applications of cornea tissue, applications including biomaterial selection, fabrication methods, scaffold structure, cellular response to these scaffolds, and future advancements of these techniques.
Collapse
Affiliation(s)
- Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Le TM, Morimoto N, Ly NTM, Mitsui T, Notodihardjo SC, Munisso MC, Kakudo N, Moriyama H, Yamaoka T, Kusumoto K. Hydrostatic pressure can induce apoptosis of the skin. Sci Rep 2020; 10:17594. [PMID: 33077833 PMCID: PMC7572420 DOI: 10.1038/s41598-020-74695-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/05/2020] [Indexed: 01/20/2023] Open
Abstract
We previously showed that high hydrostatic pressure (HHP) treatment at 200 MPa for 10 min induced complete cell death in skin and skin tumors via necrosis. We used this technique to treat a giant congenital melanocytic nevus and reused the inactivated nevus tissue as a dermis autograft. However, skin inactivated by HHP promoted inflammation in a preclinical study using a porcine model. Therefore, in the present study, we explored the pressurization conditions that induce apoptosis of the skin, as apoptotic cells are not believed to promote inflammation, so the engraftment of inactivated skin should be improved. Using a human dermal fibroblast cell line in suspension culture, we found that HHP at 50 MPa for ≥ 36 h completely induced fibroblast cell death via apoptosis based on the morphological changes in transmission electron microscopy, reactive oxygen species elevation, caspase activation and phosphatidylserine membrane translocation. Furthermore, immunohistochemistry with terminal deoxynucleotidyl transferase dUTP nick-end labeling and cleaved caspase-3 showed most cells in the skin inactivated by pressurization to be apoptotic. Consequently, in vivo grafting of apoptosis-induced inactivated skin resulted in successful engraftment and greater dermal cellular density and macrophage infiltration than our existing method. Our finding supports an alternative approach to hydrostatic pressure application.
Collapse
Affiliation(s)
- Tien Minh Le
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan. .,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Nhung Thi My Ly
- Department of Dermatology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | | | - Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-osaka, Osaka, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
26
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
27
|
Wang F, Zhao L, Li H, Li D, Zhou M, Zhou Q, Xie L. Scleral defect repair using decellularized porcine sclera in a rabbit model. Xenotransplantation 2020; 27:e12633. [DOI: 10.1111/xen.12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Fuyan Wang
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Long Zhao
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- School of Medicine and Life Sciences University of Jinan‐Shandong Academy of Medical Sciences Jinan China
| | - Hua Li
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Dongfang Li
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Mingming Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Lixin Xie
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| |
Collapse
|
28
|
Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and Challenges of Translational Corneal Bioprinting. Bioengineering (Basel) 2020; 7:bioengineering7030071. [PMID: 32640721 PMCID: PMC7552635 DOI: 10.3390/bioengineering7030071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal transplantation remains the ultimate treatment option for advanced stromal and endothelial disorders. Corneal tissue engineering has gained increasing interest in recent years, as it can bypass many complications of conventional corneal transplantation. The human cornea is an ideal organ for tissue engineering, as it is avascular and immune-privileged. Mimicking the complex mechanical properties, the surface curvature, and stromal cytoarchitecure of the in vivo corneal tissue remains a great challenge for tissue engineering approaches. For this reason, automated biofabrication strategies, such as bioprinting, may offer additional spatial control during the manufacturing process to generate full-thickness cell-laden 3D corneal constructs. In this review, we discuss recent advances in bioprinting and biomaterials used for in vitro and ex vivo corneal tissue engineering, corneal cell-biomaterial interactions after bioprinting, and future directions of corneal bioprinting aiming at engineering a full-thickness human cornea in the lab.
Collapse
Affiliation(s)
- Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Singapore National Eye Centre, Singapore 169856, Singapore
| | - Daniela F. Duarte Campos
- Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- DWI Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| |
Collapse
|
29
|
Trias E, Gallon P, Ferrari S, Piteira AR, Tabera J, Casaroli-Marano RP, Parekh M, Ruzza A, Franch A, Ponzin D. Banking of corneal stromal lenticules: a risk-analysis assessment with the EuroGTP II interactive tool. Cell Tissue Bank 2020; 21:189-204. [PMID: 32020423 DOI: 10.1007/s10561-020-09813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
We evaluated the feasibility and performed a risk-benefit analysis of the storage and widespread distribution of stromal lenticules for clinical application using a new systematic tool (European Good Tissue and cells Practices II-EuroGTP II tool), specifically designed for assessing the risk, safety and efficacy of substances of human origin. Three types of potential tissue preparations for human stromal lenticules were evaluated: cryopreserved, dehydrated and decellularized. The tool helps to identify an overall risk score (0-2: negligible; 2-6: low; 6-22: moderate; > 22: high) and suggests risk reduction strategies. For all the three types of products, we found the level of risk to be as "moderate". A process validation, pre-clinical in vitro and in vivo evaluations and a clinical study limited to a restricted number of patients should therefore be performed in order to mitigate the risks. Our study allowed to establish critical points and steps necessary to implement a new process for safe stromal lenticule preparation by the eye banks to be used in additive keratoplasty. Moreover, it shows that the EuroGTP II tool is useful to assess and identify risk reduction strategies for introduction of new Tissue and Cellular Therapies and Products into the clinical practice.
Collapse
Affiliation(s)
- Esteve Trias
- Advanced Therapy Unit, Hospital Clinic, Escala 3, Planta 1 Criopreservació, C/Villarroel 170, 08036, Barcelona, Spain.
| | - Paola Gallon
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | - Ana Rita Piteira
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Jaime Tabera
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Ricardo P Casaroli-Marano
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
- Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Mohit Parekh
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
- Institute of Ophthalmology, University College London, London, UK
| | | | - Antonella Franch
- Department of Ophthalmology, SS Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| |
Collapse
|
30
|
Riau AK, Liu YC, Yam GH, Mehta JS. Stromal keratophakia: Corneal inlay implantation. Prog Retin Eye Res 2020; 75:100780. [DOI: 10.1016/j.preteyeres.2019.100780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022]
|
31
|
Wang Y, Ma J, Jiang X, Liu Z, Yang J, Li X. Development of Transparent Acellular Dermal Matrix as Tissue-Engineered Stroma Substitute for Central Lamellar Keratoplasty. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 31999820 PMCID: PMC7205104 DOI: 10.1167/iovs.61.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To improve the transparency of the acellular dermal matrix (ADM) and investigate the optical, mechanical and histologic properties and biocompatibility of transparent ADM (TADM) in lamellar keratoplasty. Methods A stepwise sectioning strategy was applied to determine the transparency distribution of the ADM, and TADM was fabricated accordingly. Transmittance measurements, uniaxial tension testing, and histologic staining were applied to detect its properties. Lamellar keratoplasty was performed in rabbits with TADM, and postoperative evaluations were conducted including the transmittance of the transplant area and histologic staining. Results The transmittance of the ADM increased with increasing depth, and TADM was isolated mechanically at the deepest level. There was a significant improvement in the transmittance of the TADM compared with the ADM, and no significant difference in transmittance between dehydrated TADM and cornea was observed. The elastic modulus of TADM was significantly stronger than that of normal cornea (P = 0.004). TADM consisted of dense collagen fibrils, mainly collagen type I, and the collagen fibril diameter and interfibrillar spacing were determined to be larger than corneal stroma. After lamellar keratoplasty in rabbits, the TADM was well integrated with the host cornea, and transparent cornea without neovascularization was observed at 6 months. Re-epithelization was completed at 1 month, and keratocyte repopulation and collagen remodeling were observed in the graft 3 and 6 months after surgery. Conclusions This study presents the transparency distribution of the ADM and a method for obtaining TADM, which demonstrates ideal transparency, strong mechanical properties, and satisfactory biocompatibility when applied in lamellar keratoplasty.
Collapse
|
32
|
Topuz B, Günal G, Guler S, Aydin HM. Use of supercritical CO2 in soft tissue decellularization. Methods Cell Biol 2020; 157:49-79. [DOI: 10.1016/bs.mcb.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Forouzesh F, Rabbani M, Bonakdar S. A Comparison between Ultrasonic Bath and Direct Sonicator on Osteochondral Tissue Decellularization. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:227-233. [PMID: 31737551 PMCID: PMC6839442 DOI: 10.4103/jmss.jmss_64_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/19/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Background: Decellularization techniques have been widely used in tissue engineering recently. However, applying these methods which are based on removing cells and maintaining the extracellular matrix (ECM) encountered some difficulties for dense tissues such as articular cartilage. Together with chemical agents, using physical methods is suggested to help decellularization of tissues. Methods: In this study, to improve decellularization of articular cartilage, the effects of direct and indirect ultrasonic waves as a physical method in addition to sodium dodecyl sulfate (SDS) as chemical agents with 0.1% and 1% (w/v) concentrations were examined. Decellularization process was evaluated by nucleus staining with hematoxylin and eosin (H and E) and by staining glycosaminoglycans (GAG) and collagen. Results: The H and E staining indicated that 1% (w/v) SDS in addition to ultrasonic bath for 5 h significantly decreased the cell nucleus residue to lacuna ratio by 66%. Scanning electron microscopy showed that using direct sonication caused formation of micropores on the surface of the sample which results in better penetration of decellularization material and better cell attachment after decellularization. Alcian Blue and Picrosirius Red staining represented GAG and collagen, respectively, which maintained in ECM structure after decellularization by ultrasonic bath and direct sonicator. Conclusion: Ultrasonic bath can help better penetration of the decellularization material into the cartilage. This improves the speed of the decellularization process while it has no significant defect on the structure of the tissue.
Collapse
Affiliation(s)
- Farin Forouzesh
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| | - Mohsen Rabbani
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Dzobo K, Motaung KSCM, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci 2019; 20:E4628. [PMID: 31540457 PMCID: PMC6788195 DOI: 10.3390/ijms20184628] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/01/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients' quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | | | - Adetola Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
35
|
Dong M, Zhao L, Wang F, Hu X, Li H, Liu T, Zhou Q, Shi W. Rapid porcine corneal decellularization through the use of sodium N-lauroyl glutamate and supernuclease. J Tissue Eng 2019; 10:2041731419875876. [PMID: 31588337 PMCID: PMC6740050 DOI: 10.1177/2041731419875876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Corneal decellularization represents a promising alternative source of human donor with global shortage. Multiple methods have been developed for the preparation of decellularized porcine corneal stroma. However, most strategies relied on long-time treatment to facilitate the entry of detergents or nucleases, which may cause irreversible ultrastructural damage. Here, we developed a rapid decellularization method for porcine corneal stroma through the combined mild detergent sodium N-lauroyl glutamate (SLG) and supernuclease. Compared with traditional methods, the novel decellularization method allowed the efficient removal of xenoantigen DNA within 3 h, while retaining the ultrastructure, transparency, and mechanical properties of porcine corneas. When transplanted in rabbit model for 1 month, the decellularized porcine corneal grafts presented favorable transparency and biocompatibility without immune rejection. Therefore, the combined use of detergent SLG and supernuclease may serve as a promising method for the clinical use of decellularized porcine cornea.
Collapse
Affiliation(s)
- Muchen Dong
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Fuyan Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
36
|
Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods 2019; 171:86-96. [PMID: 31128238 DOI: 10.1016/j.ymeth.2019.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Ahearne
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland.
| |
Collapse
|
37
|
Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: Prospects for the future. Methods 2019; 171:108-118. [PMID: 31051254 DOI: 10.1016/j.ymeth.2019.04.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Decellularization aims to remove cells from tissue ultrastructure while preserving the mechanical and biological properties, which makes the decellularized extracellular matrix (dECM) an appropriate scaffold for tissue engineering applications. Three-dimensional (3D) bioprinting technology as a reproducible and accurate method can print the combination of ECM and autologous cells layer by layer to fabricate patient based cell-laden structures representing the intrinsic cues of natural ECM. This review defines ECM, classifies decellularization agents and techniques, and explains different sources of ECM. Then, bioprinting techniques, bioink concept, applications of dECM bioinks, and finally the future perspectives of 3d bioprinting technology are discussed.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Bioengineering Research Group, Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
38
|
Finding an Optimal Corneal Xenograft Using Comparative Analysis of Corneal Matrix Proteins Across Species. Sci Rep 2019; 9:1876. [PMID: 30755666 PMCID: PMC6372616 DOI: 10.1038/s41598-018-38342-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Numerous animal species have been proposed as sources of corneal tissue for obtaining decellularized xenografts. The selection of an appropriate animal model must take into consideration the differences in the composition and structure of corneal proteins between humans and other animal species in order to minimize immune response and improve outcome of the xenotransplant. Here, we compared the amino-acid sequences of 16 proteins present in the corneal stromal matrix of 14 different animal species using Basic Local Alignment Search Tool, and calculated a similarity score compared to the respective human sequence. Primary amino acid structures, isoelectric point and grand average of hydropathy (GRAVY) values of the 7 most abundant proteins (i.e. collagen α-1 (I), α-1 (VI), α-2 (I) and α-3 (VI), as well as decorin, lumican, and keratocan) were also extracted and compared to those of human. The pig had the highest similarity score (91.8%). All species showed a lower proline content compared to human. Isoelectric point of pig (7.1) was the closest to the human. Most species have higher GRAVY values compared to human except horse. Our results suggest that porcine cornea has a higher relative suitability for corneal transplantation into humans compared to other studied species.
Collapse
|
39
|
Lazaridis A, Brouzas D, Sekundo W, Georgalas I, Kymionis G, Chatzistefanou K, Koutsandrea C, Droutsas K. Tectonic epikeratoplasty with ethanol-stored donor corneas. Cell Tissue Bank 2018; 19:637-644. [DOI: 10.1007/s10561-018-9714-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/25/2018] [Indexed: 12/01/2022]
|
40
|
Generation and characterisation of decellularised human corneal limbus. Graefes Arch Clin Exp Ophthalmol 2018; 256:547-557. [PMID: 29392398 DOI: 10.1007/s00417-018-3904-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Limbal epithelial stem cells (LESC) reside in a niche in the corneo-scleral transition zone. Deficiency leads to pain, corneal opacity, and eventually blindness. LESC transplantation of ex-vivo expanded human LESC on a carrier such as human amniotic membrane is a current treatment option. We evaluated decellularised human limbus (DHL) as a potential carrier matrix for the transplantation of LESC. METHODS Human corneas were obtained from the local eye bank. The limbal tissue was decellularised by sodium desoxychelate and DNase solution and sterilised by γ-irradiation. Native limbus- and DHL-surface structures were assessed by scanning electron microscopy and collagen ultrastructure using transmission electron microscopy. Presence and preservation of limbal basement membrane proteins in native limbus and DHL were analysed immunohistochemically. Absence of DNA after decellularisation was assessed by Feulgen staining and DNA quantification. Presence of immune cells was explored by CD45 staining, and potential cytotoxicity was tested using a cell viability assay. RESULTS In the DHL, the DNA content was reduced from 1.5 ± 0.3 μg/mg to 0.15 ± 0.01 μg/mg; the three-dimensional structure and the arrangement of the collagen fibrils were preserved. Main basement membrane proteins such as collagen IV, laminin, and fibronectin were still present after decellularisation and γ-irradiation. CD45-expressing cells were evident neither in the native limbus nor in the DHL. DHL did not convey cytotoxicity. CONCLUSIONS The extracellular matrix (ECM) of the limbus provides a tissue specific morphology and three-dimensionality consisting of particular ECM proteins. It therefore represents a substantial component of the stem cell niche. The DHL provides a specific limbal niche surrounding, and might serve as an easily producible carrier matrix for LESC transplantation.
Collapse
|
41
|
Effect of Isolation Technique and Location on the Phenotype of Human Corneal Stroma-Derived Cells. Stem Cells Int 2017; 2017:9275248. [PMID: 29213290 PMCID: PMC5682086 DOI: 10.1155/2017/9275248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/11/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To determine the effect of the isolation technique and location upon the phenotype of human corneal stroma-derived cells (CSCs). Methods CSCs were isolated from the corneal stroma center and periphery using the explant or enzymatic digestion technique. The native tissue was stained for functional markers, while cultured cells were analysed by FACS. PCR was used to determine gene expression in the cultured versus native cells. Results The native stroma was positive for α-actinin, ALDH1A1, CD31, CD34, Collagen I, and Vimentin. Cultured cells expressed CD73, CD90, CD105, CD51, Nestin, CD49a, CD49d, ABCG2, and CD47. PCR demonstrated a significant upregulation of ALDH1A1, AQP1, ITGB4, KLF4, CD31, CD34, and CXCR4 in the native tissue, while the expression of ABCG2, ITGAV, Nestin, CD73, CD90, CD105, and Vimentin were significantly higher in the cultured cells. GPC did not change. Conclusion The study finds no significant difference between the phenotype of CSCs generated by the explant or enzymatic digestion technique from the center or periphery of the stroma. Isolation of the cells can be performed without regard to the location and isolation technique used for research. Cultivated CSCs undergo a complete surface marker and genotype profile change compared to the state in situ.
Collapse
|
42
|
Aslan B, Guler S, Tevlek A, Aydin HM. Evaluation of collagen foam, poly(l-lactic acid) nanofiber mesh, and decellularized matrices for corneal regeneration. J Biomed Mater Res B Appl Biomater 2017; 106:2157-2168. [DOI: 10.1002/jbm.b.34022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Bahar Aslan
- Institute of Science, Bioengineering Division; , Hacettepe University; Ankara Turkey
| | - Selcan Guler
- Institute of Science, Bioengineering Division; , Hacettepe University; Ankara Turkey
| | - Atakan Tevlek
- Institute of Science, Bioengineering Division; , Hacettepe University; Ankara Turkey
| | - Halil Murat Aydin
- Environmental Engineering Department and Bioengineering Division and Centre for Bioengineering; Hacettepe University; Ankara Turkey
| |
Collapse
|
43
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
44
|
Lin Y, Zheng Q, Hua S, Meng Y, Chen W, Wang Y. Cross-linked decellularized porcine corneal graft for treating fungal keratitis. Sci Rep 2017; 7:9955. [PMID: 28855517 PMCID: PMC5577144 DOI: 10.1038/s41598-017-08207-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
This study aims to develop a cross-linked decellularized porcine corneal graft (cDPC) as a substitute for lamellar donor corneas and to evaluate the feasibility of using cDPC to treat fungal keratitis. The cDPC was prepared by decellularization, chemical crosslinking and γ-ray irradiation. Transparency, effectiveness of decellularization and biomechanical strength of cDPC were evaluated. The safety and efficacy of using cDPC to treat fungal keratitis were evaluated in the rabbit model. The transparency of cDPC was similar to that of a native porcine cornea (NPC), and no intact cells were observed in cDPC except for an insignificant amount of residual shrinking cellular nucleus. Compared to the NPC, the biomechanical strength of the cDPC was significantly increased. In the rabbit model of lamellar keratoplasty, the implanted cDPC reduced the incidence of corneal perforation, and also maintained transparency in majority. The results of this study suggest that the cDPC is capable of restoring the original transparency of cornea while effectively treating fungal keratitis. The cDPC is a highly promising ideal substitute for the donor human cornea.
Collapse
Affiliation(s)
- Yongliang Lin
- Biomedical Research and Development Centre, Jinan University, Guangzhou, 510632, China
| | - Qinxiang Zheng
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shanshan Hua
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- Ningbo First Hospital, Ningbo, 315010, China
| | - Yongchun Meng
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yifei Wang
- Biomedical Research and Development Centre, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW, Yeh ML. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater 2017; 58:238-243. [PMID: 28579539 DOI: 10.1016/j.actbio.2017.05.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
In this study, we developed a novel method using supercritical carbon dioxide (SCCO2) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO2-treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. STATEMENT OF SIGNIFICANCE We decellularized the porcine cornea using SCCO2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO2 extraction technology. SCCO2-treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering.
Collapse
|
46
|
Brunette I, Roberts CJ, Vidal F, Harissi-Dagher M, Lachaine J, Sheardown H, Durr GM, Proulx S, Griffith M. Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res 2017; 59:97-130. [DOI: 10.1016/j.preteyeres.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
|
47
|
Ghanizadeh Tabriz A, Mills CG, Mullins JJ, Davies JA, Shu W. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating. Front Bioeng Biotechnol 2017; 5:13. [PMID: 28286747 PMCID: PMC5323421 DOI: 10.3389/fbioe.2017.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).
Collapse
Affiliation(s)
| | - Christopher G Mills
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| | - Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; Centre for Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Wenmiao Shu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
48
|
Hashimoto Y, Hattori S, Sasaki S, Honda T, Kimura T, Funamoto S, Kobayashi H, Kishida A. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 2016; 6:27734. [PMID: 27291975 PMCID: PMC4904214 DOI: 10.1038/srep27734] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
The decellularized cornea has received considerable attention for use as an artificial cornea. The decellularized cornea is free from cellular components and other immunogens, but maintains the integrity of the extracellular matrix. However, the ultrastructure of the decellularized cornea has yet to be demonstrated in detail. We investigated the influence of high hydrostatic pressure (HHP) on the decellularization of the corneal ultrastructure and its involvement in transparency, and assessed the in vivo behaviour of the decellularized cornea using two animal transplantation models, in relation to remodelling of collagen fibrils. Decellularized corneas were prepared by the HHP method. The decellularized corneas were executed by haematoxylin and eosin and Masson's trichrome staining to demonstrate the complete removal of corneal cells. Transmission electron microscopy revealed that the ultrastructure of the decellularized cornea prepared by the HHP method was better maintained than that of the decellularized cornea prepared by the detergent method. The decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty using a rabbit model was stable and remained transparent without ultrastructural alterations. We conclude that the superior properties of the decellularized cornea prepared by the HHP method were attributed to the preservation of the corneal ultrastructure.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Shinya Hattori
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Shuji Sasaki
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
- Department of Ophthalmology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takako Honda
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Hisatoshi Kobayashi
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- World Premier International Research Center Initiative, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, Japan
| |
Collapse
|
49
|
Dextran Preserves Native Corneal Structure During Decellularization. Tissue Eng Part C Methods 2016; 22:561-72. [DOI: 10.1089/ten.tec.2016.0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep 2016; 6:26339. [PMID: 27210519 PMCID: PMC4876320 DOI: 10.1038/srep26339] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry.
Collapse
|