1
|
Hossain SMC, Zakaria JB, Ferdows M, Bangalee MZI, Alam MS, Zhao G. Computer simulation-based nanothermal field and tissue damage analysis for cardiac tumor ablation. Med Biol Eng Comput 2024; 62:1549-1567. [PMID: 38308669 DOI: 10.1007/s11517-024-03017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Radiofrequency ablation is a nominally invasive technique to eradicate cancerous or non-cancerous cells by heating. However, it is still hampered to acquire a successful cell destruction process due to inappropriate RF intensities that will not entirely obliterate tumorous tissues, causing in treatment failure. In this study, we are acquainted with a nanoassisted RF ablation procedure of cardiac tumor to provide better outcomes for long-term survival rate without any recurrences. A three-dimensional thermo-electric energy model is employed to investigate nanothermal field and ablation efficiency into the left atrium tumor. The cell death model is adopted to quantify the degree of tissue injury while injecting the Fe3O4 nanoparticles concentrations up to 20% into the target tissue. The results reveal that when nanothermal field extents as a function of tissue depth (10 mm) from the electrode tip, the increasing thermal rates were approximately 0.54362%, 3.17039%, and 7.27397% for the particle concentration levels of 7%, 10%, and 15% compared with no-particle case. In the 7% Fe3O4 nanoparticles, 100% fractional damage index is achieved after ablation time of 18 s whereas tissue annihilation approach proceeds longer to complete for no-particle case. The outcomes indicate that injecting nanoparticles may lessen ablation time in surgeries and prevent damage to adjacent healthy tissue.
Collapse
Affiliation(s)
- S M C Hossain
- Department of Applied Mathematics, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| | - J B Zakaria
- Department of Applied Mathematics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Ferdows
- Department of Applied Mathematics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Z I Bangalee
- Department of Applied Mathematics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M S Alam
- Department of Mathematics, Jagannath University, Dhaka, 1100, Bangladesh
| | - G Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Bhagavatula SK, Panikkanvalappil SR, Tokuda J, Levesque V, Tatarova Z, Liu G, Markert JE, Jonas O. Superparamagnetic iron oxide nanoparticle enhanced percutaneous microwave ablation: Ex-vivo characterization using magnetic resonance thermometry. Med Phys 2024; 51:3195-3206. [PMID: 38513254 PMCID: PMC11406496 DOI: 10.1002/mp.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/27/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Percutaneous microwave ablation (pMWA) is a minimally invasive procedure that uses a microwave antenna placed at the tip of a needle to induce lethal tissue heating. It can treat cancer and other diseases with lower morbidity than conventional surgery, but one major limitation is the lack of control over the heating region around the ablation needle. Superparamagnetic iron oxide nanoparticles have the potential to enhance and control pMWA heating due to their ability to absorb microwave energy and their ease of local delivery. PURPOSE The purpose of this study is to experimentally quantify the capabilities of FDA-approved superparamagnetic iron oxide Feraheme nanoparticles (FHNPs) to enhance and control pMWA heating. This study aims to determine the effectiveness of locally injected FHNPs in increasing the maximum temperature during pMWA and to investigate the ability of FHNPs to create a controlled ablation zone around the pMWA needle. METHODS PMWA was performed using a clinical ablation system at 915 MHz in ex-vivo porcine liver tissues. Prior to ablation, 50 uL 5 mg/mL FHNP injections were made on one side of the pMWA needle via a 23-gauge needle. Local temperatures at the FHNP injection site were directly compared to equidistant control sites without FHNP. First, temperatures were compared using directly inserted thermocouples. Next, temperatures were measured non-invasively using magnetic resonance thermometry (MRT), which enabled comprehensive four-dimensional (volumetric and temporal) assessment of heating effects relative to nanoparticle distribution, which was quantified using dual-echo ultrashort echo time (UTE) subtraction MR imaging. Maximum heating within FHNP-exposed tissues versus control tissues were compared at multiple pMWA energy delivery settings. The ability to generate a controlled asymmetric ablation zone using multiple FHNP injections was also tested. Finally, intra-procedural MRT-derived heat maps were correlated with gold standard gross pathology using Dice similarity analysis. RESULTS Maximum temperatures at the FHNP injection site were significantly higher than control (without FHNP) sites when measured using direct thermocouples (93.1 ± 6.0°C vs. 57.2 ± 8.1°C, p = 0.002) and using non-invasive MRT (115.6 ± 13.4°C vs. 49.0 ± 10.6°C, p = 0.02). Temperature difference between FHNP-exposed and control sites correlated with total energy deposition: 66.6 ± 17.6°C, 58.1 ± 8.5°C, and 20.8 ± 9.2°C at high (17.5 ± 2.2 kJ), medium (13.6 ± 1.8 kJ), and low (8.8 ± 1.1 kJ) energies, respectively (all pairwise p < 0.05). Each FHNP injection resulted in a nanoparticle distribution within 0.9 ± 0.2 cm radially of the injection site and a local lethal heating zone confined to within 1.1 ± 0.4 cm radially of the injection epicenter. Multiple injections enabled a controllable, asymmetric ablation zone to be generated around the ablation needle, with maximal ablation radius on the FHNP injection side of 1.6 ± 0.2 cm compared to 0.7 ± 0.2 cm on the non-FHNP side (p = 0.02). MRT intra-procedural predicted ablation zone correlated strongly with post procedure gold-standard gross pathology assessment (Dice similarity 0.9). CONCLUSIONS Locally injected FHNPs significantly enhanced pMWA heating in liver tissues, and were able to control the ablation zone shape around a pMWA needle. MRI and MRT allowed volumetric real-time visualization of both FHNP distribution and FHNP-enhanced pMWA heating that was useful for intra-procedural monitoring. This work strongly supports further development of a FHNP-enhanced pMWA paradigm; as all individual components of this approach are approved for patient use, there is low barrier for clinical translation.
Collapse
Affiliation(s)
- Sharath K. Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Junichi Tokuda
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vincent Levesque
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zuzana Tatarova
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John E. Markert
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
4
|
Singla A, Marwaha A, Marwaha S. Multi-criterion optimization of invasive antenna applicators for Au@Fe 3O4, Au@-Fe 2O 3 and Au@-Fe 2O 3 mediated microwave ablation treatment. Electromagn Biol Med 2023; 42:21-40. [PMID: 36857381 DOI: 10.1080/15368378.2023.2184381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Magnetic nanoparticle (MNP) mediated microwave ablation has the great potential at present to address challenges associated with treatment planning such as maximum heat generation in the vicinity of targeted tissues in lesser penetration time. Further, the antenna applicators injected in human phantom must be rigid and thin. The derivative-free optimization algorithms are carried out for optimum design of monopole, slot, dipole, and tapered slot antenna applicators for ablation of tumour tissues invasively. It is found that in terms of input impedance matching, the used multi-criterion Nelder-Mead optimization performs efficiently for tapered slot applicator achieving S11 value of -40 dB with much reduced antenna dimensions. In order to further escalate the performance of tapered slot antenna, gold (Au)-coated iron-based MNPs are suggested for tumor infusion. Spherical gold-coated shell material is preferrable for more sphericity of ablation zone, biocompatibility and due to high conductivity, heat generated in MNPs can be transferred to biological tissues more rapidly. The size, type, and shape of MNPs also influence the heat generation in tumor tissues. Thus, three different types of MNPs having high magnetization properties, Au@Fe3O4, Au@α-Fe2O3 and Au@γ-Fe2O3 have been employed to study the performance in terms of maximum rise in temperature, specific absorption rate (SAR), and area of ablation zone by varying core size radius of MNPs. Results demonstrate that increase in radius of MNP core helps in increasing the temperature distribution and reduction in ablation zone. The optimized lesion is achieved for 20 nm core radius of Au@Fe3O4.
Collapse
Affiliation(s)
- Alka Singla
- Electronics and Communication Engineering Department, SLIET Longowal, Sangrur, India
| | - Anupma Marwaha
- Electronics and Communication Engineering Department, SLIET Longowal, Sangrur, India
| | - Sanjay Marwaha
- Electrical and Instrumentation Engineering Department, SLIET Longowal, Sangrur, India
| |
Collapse
|
5
|
Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14102093. [PMID: 36297529 PMCID: PMC9607318 DOI: 10.3390/pharmaceutics14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.
Collapse
|
6
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
7
|
Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. NANO-MICRO LETTERS 2020; 13:11. [PMID: 34138198 PMCID: PMC8187688 DOI: 10.1007/s40820-020-00537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 05/05/2023]
Abstract
Cancer has nowadays become one of the leading causes of death worldwide. Conventional anticancer approaches are associated with different limitations. Therefore, innovative methodologies are being investigated, and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death. The idea is to conjugate two different components, i.e., an external physical input and nanoparticles. Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest, thus also limiting the negative outcomes for the surrounding tissues. Tuning both the properties of the nanomaterial and the involved triggering stimulus, it is possible furthermore to achieve not only a therapeutic effect, but also a powerful platform for imaging at the same time, obtaining a nano-theranostic application. In the present review, we highlight the role of nanoparticles as therapeutic or theranostic tools, thus excluding the cases where a molecular drug is activated. We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles. We perform a special focus on mechanical waves responding nanoparticles, in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.
| |
Collapse
|
8
|
Effect of Open-Ended Coaxial Probe-to-Tissue Contact Pressure on Dielectric Measurements. SENSORS 2020; 20:s20072060. [PMID: 32268598 PMCID: PMC7181017 DOI: 10.3390/s20072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Open-ended coaxial probes are widely used to gather dielectric properties of biological tissues. Due to the lack of an agreed data acquisition protocol, several environmental conditions can cause inaccuracies when comparing dielectric data. In this work, the effect of a different measurement probe-to-tissue contact pressure was monitored in the frequency range from 0.5 to 20 GHz. Therefore, we constructed a controlled lifting platform with an integrated pressure sensor to exert a constant pressure on the tissue sample during the dielectric measurement. In the pressure range from 7.74 kPa to 77.4 kPa, we observed a linear correlation of - 0 . 31 ± 0 . 09 % and - 0 . 32 ± 0 . 14 % per kPa for, respectively, the relative real and imaginary complex permittivity. These values are statistically significant compared with the reported measurement uncertainty. Following the literature in different biology-related disciplines regarding pressure-induced variability in measurements, we hypothesize that these changes originate from squeezing out the interstitial and extracellular fluid. This process locally increases the concentration of membranes, cellular organelles, and proteins in the sensed volume. Finally, we suggest moving towards a standardized probe-to-tissue contact pressure, since the literature has already demonstrated that reprobing at the same pressure can produce repeatable data within a 1% uncertainty interval.
Collapse
|
9
|
Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles have continuously gained importance for the purpose of magnetically-aided drug-delivery, magnetofection, and hyperthermia. We have summarized significant experimental approaches, as well as their advantages and disadvantages with respect to future clinical translation. This field is alive and well and promises meaningful contributions to the development of novel cancer therapies.
Collapse
|