1
|
Pires LS, Melo DS, Borges JP, Henriques CR. PEDOT-Coated PLA Fibers Electrospun from Solutions Incorporating Fe(III)Tosylate in Different Solvents by Vapor-Phase Polymerization for Neural Regeneration. Polymers (Basel) 2023; 15:4004. [PMID: 37836053 PMCID: PMC10575336 DOI: 10.3390/polym15194004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/15/2023] Open
Abstract
Therapeutic solutions for injuries in the peripheral nervous system are limited and not existing in the case of the central nervous system. The electrical stimulation of cells through a cell-supporting conductive scaffold may contribute to new therapeutic solutions for nerve regeneration. In this work, biocompatible Polylactic acid (PLA) fibrous scaffolds incorporating Fe(III)Tosylate (FeTos) were produced by electrospinning a mixture of PLA/FeTos solutions towards a rotating cylinder, inducing fiber alignment. Fibers were coated with the conductive polymer Poly(3,4 ethylenedioxythiophene) (PEDOT) formed by vapor-phase polymerization of EDOT at 70 °C for 2 h. Different solvents (ETH, DMF and THF) were used as FeTos solvents to investigate the impact on the scaffold's conductivity. Scaffold conductivity was estimated to be as high as 1.50 × 10-1 S/cm when FeTos was dissolved in DMF. In vitro tests were performed to evaluate possible scaffold cytotoxicity, following ISO 10993-5, revealing no cytotoxic effects. Differentiation and growth of cells from the neural cell line SH-SY5Y seeded on the scaffolds were also assessed, with neuritic extensions observed in cells differentiated in neurons with retinoic acid. These extensions tended to follow the preferential alignment of the scaffold fibers.
Collapse
Affiliation(s)
- Laura S. Pires
- Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Diogo S. Melo
- Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - João P. Borges
- Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
- i3N/CENIMAT, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Célia R. Henriques
- Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
- i3N/CENIMAT, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Biomedical applications of silica-based aerogels: a comprehensive review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Qin C, Yue Z, Wallace GG, Chen J. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions. ACS APPLIED BIO MATERIALS 2022; 5:5041-5056. [PMID: 36260917 DOI: 10.1021/acsabm.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electrochemistry has become a powerful strategy to modulate cellular behavior and biological activity by manipulating electrical signals. Subsequent electrical stimulus-responsive conducting polymers (CPs) have advanced traditional wired electrochemical stimulation (ES) systems and developed wireless cell stimulation systems due to their electroconductivity, biocompatibility, stability, and flexibility. Bipolar electrochemistry (BPE), i.e., wireless electrochemistry, offers an effective pathway to modify wired ES systems into a desirable contactless mode, turning out a potential technique to offer fundamental insights into neural cell stimulation and neural network formation. This review commences with a brief discussion of the BPE technique and also the advantages of a bipolar electrochemical stimulation (BPES) system compared to traditional wired ES systems and other wireless ES systems. Then, the BPES system is elucidated through four aspects: the benefits of BPES, the key factors to establish BPES platforms for cell stimulation, the limits/barriers to overcome for current rigid materials in particular metals-based systems, and a brief overview of the concept proved by CPs-based systems. Furthermore, how to refine the existing BPES system from materials/devices modification that combine CP compositions with 3D fabrication/bioprinting technologies is elaborately discussed as well. Finally, the review ends together with future research directions, picturing the potential of BPES system in biomedical applications.
Collapse
Affiliation(s)
- Chunyan Qin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| |
Collapse
|
4
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
5
|
Ghimire S, Sala MR, Chandrasekaran S, Raptopoulos G, Worsley M, Paraskevopoulou P, Leventis N, Sabri F. Noninvasive Detection, Tracking, and Characterization of Aerogel Implants Using Diagnostic Ultrasound. Polymers (Basel) 2022; 14:polym14040722. [PMID: 35215635 PMCID: PMC8875680 DOI: 10.3390/polym14040722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Medical implants are routinely tracked and monitored using different techniques, such as MRI, X-ray, and ultrasound. Due to the need for ionizing radiation, the two former methods pose a significant risk to tissue. Ultrasound imaging, however, is non-invasive and presents no known risk to human tissue. Aerogels are an emerging material with great potential in biomedical implants. While qualitative observation of ultrasound images by experts can already provide a lot of information about the implants and the surrounding structures, this paper describes the development and study of two simple B-Mode image analysis techniques based on attenuation measurements and echogenicity comparisons, which can further enhance the study of the biological tissues and implants, especially of different types of biocompatible aerogels.
Collapse
Affiliation(s)
- Sagar Ghimire
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
| | - Martina Rodriguez Sala
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
| | | | - Grigorios Raptopoulos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (G.R.); (P.P.)
| | - Marcus Worsley
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.C.); (M.W.)
| | - Patrina Paraskevopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (G.R.); (P.P.)
| | - Nicholas Leventis
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Firouzeh Sabri
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
- Correspondence:
| |
Collapse
|
6
|
Czerwińska-Główka D, Krukiewicz K. Guidelines for a Morphometric Analysis of Prokaryotic and Eukaryotic Cells by Scanning Electron Microscopy. Cells 2021; 10:3304. [PMID: 34943812 PMCID: PMC8699492 DOI: 10.3390/cells10123304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.
Collapse
Affiliation(s)
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
7
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
8
|
Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Zhang Y, Sang S, Han Y. Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rong Cheng
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanyan Cao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, PR China
| | - Yayun Yan
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Zhizhong Shen
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yajing Zhao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yixia Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Shengbo Sang
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, PR China
| |
Collapse
|
9
|
Rodriguez Sala M, Chandrasekaran S, Skalli O, Worsley M, Sabri F. Enhanced neurite outgrowth on electrically conductive carbon aerogel substrates in the presence of an external electric field. SOFT MATTER 2021; 17:4489-4495. [PMID: 33949585 DOI: 10.1039/d1sm00183c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previous works from our laboratory have firmly established that aerogels are a suitable substrate to elicit accelerated neurite extension. On non-conducting aerogels, in the presence of an externally-applied DC bias, neurons extended neurites which were preferentially aligned towards the anode. In this investigation, we sought to determine whether electrically-conductive carbon aerogels elicited a more robust alignment of neurites toward the anode than non-conductive aerogels due to the capacity of conductive aerogels to sustain a current, thereby providing a direct interface between neurons and the external electrical stimulus. To determine if this was the case, we plated PC12 neuronal cells on electrically conductive carbon aerolges derived from acetic acid-catalized resorcinol formaldehyde aerogels (ARF-CA) and subjected them to an external electric field. The voltages applied at the electrodes of the custom-built electro-stimulation chamber were 0 V, 15 V, and 30 V. For each voltage, the directionality and length of the neurites extended by PC12 cells were determined and compared to those observed when PC12 cells were plated on non-conductive aerogels subjected to the same voltage. The results show that the directionality of neurite extension was similar between conductive and non-conductive aerogels. A higher neurite length difference was observed on conductive aerogels with increasing voltage, 43% and 106% for 0-15 V and 0-30 V respectively, compared to non-conductive aerogels, 12% and 20%. These findings indicate that conductive carbon aerogels have a greater potential as scaffolds for nerve regeneration than non-conductive ones.
Collapse
Affiliation(s)
- Martina Rodriguez Sala
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA.
| | | | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| | - Marcus Worsley
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
10
|
Eftekhari BS, Eskandari M, Janmey PA, Samadikuchaksaraei A, Gholipourmalekabadi M. Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Adv 2021; 11:15795-15807. [PMID: 35481217 PMCID: PMC9029165 DOI: 10.1039/d1ra00413a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Biophysical characteristics of engineered scaffolds such as topography and electroconductivity have shown potentially beneficial effects on stem cell morphology, proliferation, and differentiation toward neural cells. In this study, we fabricated a conductive hydrogel made from chitosan (CS) and polyaniline (PANI) with induced PC12 cell surface topography using a cell imprinting technique to provide both topographical properties and conductivity in a platform. The engineered hydrogel's potential for neural priming of rat adipose-derived stem cells (rADSCs) was determined in vitro. The biomechanical analysis revealed that the electrical conductivity, stiffness, and hydrophobicity of flat (F) and cell-imprinted (CI) substrates increased with increased PANI content in the CS/PANI scaffold. The conductive substrates exhibited a lower degradation rate compared to non-conductive substrates. According to data obtained from F-actin staining and AFM micrographs, both CI(CS) and CI(CS-PANI) substrates induced the morphology of rADSCs from their irregular shape (on flat substrates) into the elongated and bipolar shape of the neuronal-like PC12 cells. Immunostaining analysis revealed that both CI(CS) and CI (CS-PANI) significantly upregulated the expression of GFAP and MAP2, two neural precursor-specific genes, in rADSCs compared with flat substrates. Although the results reveal that both cell-imprinted topography and electrical conductivity affect the neural lineage differentiation, some data demonstrate that the topography effects of the cell-imprinted surface have a more critical role than electrical conductivity on neural priming of ADSCs. The current study provides new insight into the engineering of scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Behnaz Sadat Eftekhari
- Department of Biomedical Engineering, Amirkabir University of Technology 424 Hafez Ave Tehran 15875-4413 Iran +98 21 6454 23 62
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania 1010 Vagelos Research Laboratories, 3340 Smith Walk Philadelphia PA 19104-6383 USA +1 215 573 6815 +1 215 573 7380
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology 424 Hafez Ave Tehran 15875-4413 Iran +98 21 6454 23 62
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania 1010 Vagelos Research Laboratories, 3340 Smith Walk Philadelphia PA 19104-6383 USA +1 215 573 6815 +1 215 573 7380
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Sala MR, Skalli O, Leventis N, Sabri F. Nerve Response to Superelastic Shape Memory Polyurethane Aerogels. Polymers (Basel) 2020; 12:E2995. [PMID: 33334083 PMCID: PMC7765513 DOI: 10.3390/polym12122995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
We have previously shown the suitability of aerogels as scaffolds for neuronal cells. Here, we report on the use of superelastic shape memory polyurethane aerogels (SSMPA). SSMPA have a distinctly different stiffness than previously reported aerogels. The soft and deformable nature of SSMPA allowed for radial compression of the aerogel induced by a custom designed apparatus. This radial compression changed the pore diameter and surface roughness (Sa) of SSMPA, while maintaining similar stiffness. Two varieties of SSMPA were used, Mix-14 and Mix-18, with distinctly different pore diameters and Sa. Radial compression led to a decreased pore diameter, which, in turn, decreased the Sa. The use of custom designed apparatus and two types of SSMPA allowed us to examine the influence of stiffness, pore size, and Sa on the extension of processes (neurites) by PC12 neuronal cells. PC12 cells plated on SSMPA with a higher degree of radial compression extended fewer neurites per cell when compared to other groups. However, the average length of the neurites was significantly longer when compared to the unrestricted group and to those extended by cells plated on SSMPA with less radial compression. These results demonstrate that SSMPA with 1.9 µm pore diameter, 1.17 µm Sa, and 203 kPa stiffness provides the optimum combination of physical parameters for nerve regeneration.
Collapse
Affiliation(s)
- Martina Rodriguez Sala
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
| | - Omar Skalli
- Department of Biological Science, University of Memphis, Memphis, TN 38152, USA;
| | - Nicholas Leventis
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
12
|
Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: In vitro and in vivo study. Int J Biol Macromol 2020; 159:154-173. [PMID: 32416294 DOI: 10.1016/j.ijbiomac.2020.05.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023]
Abstract
Lignin displays attractive properties in peripheral nerve applications. Here, aligned polycaprolactone (PCL) fibers with various percentages of lignin nanoparticles were fabricated using the electrospinning method. The morphologies, contact angles, mechanical properties, in vitro degradation, and water uptake of the PCL/lignin fibers were characterized. Cell viability and adhesion of PC12 and human adipose-derived stem cells (hADSCs) were studied employing MTT assay and SEM, respectively. SEM, immunocytochemistry, and Real-Time PCR were utilized to characterize neural differentiation and neurite length of PC12 and hADSCs. To further study on lignin effect on nerve regeneration, in vivo studies were performed. The results indicated that all nanocomposite fibers were smooth and bead-free. With increasing the lignin content, the water contact angle decreased while in vitro degradation, water uptake, and Young's modulus increased compared to the PCL fibers. Cell viability, and differentiation along with neurite length extension were promoted by increasing lignin content. The neural markers expression for differentiated cells were upregulated by the increase of lignin percent. In vivo investigation also demonstrates that sample groups incorporating 15% lignin nanoparticles showed better regeneration among others. Therefore, PCL with 15% of lignin nanoparticles shows great potential to be applied for nerve regeneration.
Collapse
|
13
|
Schimper CB, Pachschwoell PS, Hettegger H, Neouze MA, Nedelec JM, Wendland M, Rosenau T, Liebner F. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H 2O/DMSO Based Approach. Molecules 2020; 25:molecules25071695. [PMID: 32272769 PMCID: PMC7181236 DOI: 10.3390/molecules25071695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Biopolymer aerogels of appropriate open-porous morphology, nanotopology, surface chemistry, and mechanical properties can be promising cell scaffolding materials. Here, we report a facile approach towards the preparation of cellulose phosphate aerogels from two types of cellulosic source materials. Since high degrees of phosphorylation would afford water-soluble products inappropriate for cell scaffolding, products of low DSP (ca. 0.2) were prepared by a heterogeneous approach. Aiming at both i) full preservation of chemical integrity of cellulose during dissolution and ii) utilization of specific phase separation mechanisms upon coagulation of cellulose, TBAF·H2O/DMSO was employed as a non-derivatizing solvent. Sequential dissolution of cellulose phosphates, casting, coagulation, solvent exchange, and scCO2 drying afforded lightweight, nano-porous aerogels. Compared to their non-derivatized counterparts, cellulose phosphate aerogels are less sensitive towards shrinking during solvent exchange. This is presumably due to electrostatic repulsion and translates into faster scCO2 drying. The low DSP values have no negative impact on pore size distribution, specific surface (SBET ≤ 310 m2 g−1), porosity (Π 95.5–97 vol.%), or stiffness (Eρ ≤ 211 MPa cm3 g−1). Considering the sterilization capabilities of scCO2, existing templating opportunities to afford dual-porous scaffolds and the good hemocompatibility of phosphorylated cellulose, TBAF·H2O/DMSO can be regarded a promising solvent system for the manufacture of cell scaffolding materials.
Collapse
Affiliation(s)
- Christian B. Schimper
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria; (C.B.S.); (P.S.P.); (H.H.); (T.R.)
| | - Paul S. Pachschwoell
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria; (C.B.S.); (P.S.P.); (H.H.); (T.R.)
| | - Hubert Hettegger
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria; (C.B.S.); (P.S.P.); (H.H.); (T.R.)
| | - Marie-Alexandra Neouze
- Vienna University of Technology, Institute of Materials Chemistry, Getreidemarkt 9/165, A-1060 Vienna, Austria;
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France;
| | - Martin Wendland
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemical and Energy Engineering, Muthgasse 107, A-1190 Vienna, Austria;
| | - Thomas Rosenau
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria; (C.B.S.); (P.S.P.); (H.H.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo/Turku, Finland
| | - Falk Liebner
- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute for Chemistry of Renewable Resources, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria; (C.B.S.); (P.S.P.); (H.H.); (T.R.)
- University Aveiro, Department of Chemistry and CICECO Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
14
|
López-Iglesias C, Barros J, Ardao I, Gurikov P, Monteiro FJ, Smirnova I, Alvarez-Lorenzo C, García-González CA. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin. Polymers (Basel) 2020; 12:polym12020273. [PMID: 32013071 PMCID: PMC7077406 DOI: 10.3390/polym12020273] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023] Open
Abstract
Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels in the form of microparticles are of special interest for wound treatment and can also be loaded with bioactive agents to improve the healing process. However, the production of the precursor gel may be limited by the viscosity of the polysaccharide initial solution. The jet cutting technique is regarded as a suitable processing technique to overcome this problem. In this work, the technological combination of jet cutting and supercritical drying of gels was assessed to produce chitosan aerogel microparticles loaded with vancomycin HCl (antimicrobial agent) for wound healing purposes. The resulting aerogel formulation was evaluated in terms of morphology, textural properties, drug loading, and release profile. Aerogels were also tested for wound application in terms of exudate sorption capacity, antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, the microparticles had excellent textural properties, absorbed high amounts of exudate, and controlled the release of vancomycin HCl, providing sustained antimicrobial activity.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
| | - Joana Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto Nacional de Engenharia Biomédica (INEB) and Faculdade de Engenharia Universidade do Porto (FEUP), Universidade do Porto, 4200-135 Porto, Portugal; (J.B.); (F.J.M.)
| | - Inés Ardao
- BioFarma Research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Eißendorfer Str. 38, 21073 Hamburg, Germany;
| | - Fernando J. Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto Nacional de Engenharia Biomédica (INEB) and Faculdade de Engenharia Universidade do Porto (FEUP), Universidade do Porto, 4200-135 Porto, Portugal; (J.B.); (F.J.M.)
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany;
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
| | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
- Correspondence: ; Tel.: +34-881-814882
| |
Collapse
|
15
|
Lin CC, Chang JJ, Yung MC, Huang WC, Chen SY. Spontaneously Micropatterned Silk/Gelatin Scaffolds with Topographical, Biological, and Electrical Stimuli for Neuronal Regulation. ACS Biomater Sci Eng 2020; 6:1144-1153. [PMID: 33464846 DOI: 10.1021/acsbiomaterials.9b01449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Effective integration of stimulation and direction in bionic scaffolds by materials and microstructure design has been the focus in the advancement of nerve regeneration. Hydrogels are the most promising biomimicked materials used in developing nerve grafts, but the highly hydrated networks limit the fabrication of hydrogel materials into complex biomedical devices. Herein, facile lithography-free and spontaneously micropatterned techniques were used to fabricate a smart protein hydrogel-based scaffold, which carried topographical, electrical, and chemical induction for neural regulation. The synthesized tissue-mimicked silk-gelatin (SG)/polylactic acid bilayer system can self-form three-dimensional ordered corrugation micropatterns with well-defined dimensions (wavelength, λ) based on the stress-induced topography. Through magnetically and topographically guided deposition of the synthesized nerve growth factor-incorporated Fe3O4-graphene nanoparticles (GFPNs), a biologically and electrically conductive cell passage with one-dimensional directionality was constructed to allow for a controllable constrained geometric effect on neuronal adhesion, differentiation, and neurite orientation. Particularly, the SG with corrugation patterns of λ ≈ 30 μm resulted in the optimal cell adhesion and differentiation in response to the pattern guidance. Furthermore, the additional electrical stimulation applied on GFPN-deposited SG resulted in a 1.5-fold increase in the neurite elongation by day 7, finally leading to the neuronal connection by day 21. Such a hydrogel device with synergistic effects of physical and chemical enhancement on neuronal activity provides an expectable opportunity in the development of next-generation nerve conduits.
Collapse
Affiliation(s)
- Chun-Chang Lin
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| | - Jing-Jing Chang
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| | - Ming-Chi Yung
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan, R.O.C
| | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C.,Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan, R.O.C
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| |
Collapse
|
16
|
Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 2019; 13:415. [PMID: 31616252 PMCID: PMC6763607 DOI: 10.3389/fncel.2019.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about −65 to −70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.
Collapse
Affiliation(s)
- Li-Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhong-Cai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Lin
- Department of Respiratory Medicine, Rongcheng People's Hospital, Rongcheng, China
| | - Ying-Cai Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiao-Rong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology of Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Hadley J, Hirschman J, Morshed BI, Sabri F. RF Coupling of Interdigitated Electrode Array on Aerogels for in vivo Nerve Guidance Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|