1
|
Karami P, Laurent A, Philippe V, Applegate LA, Pioletti DP, Martin R. Cartilage Repair: Promise of Adhesive Orthopedic Hydrogels. Int J Mol Sci 2024; 25:9984. [PMID: 39337473 PMCID: PMC11432485 DOI: 10.3390/ijms25189984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage repair remains a major challenge in human orthopedic medicine, necessitating the application of innovative strategies to overcome existing technical and clinical limitations. Adhesive hydrogels have emerged as promising candidates for cartilage repair promotion and tissue engineering, offering key advantages such as enhanced tissue integration and therapeutic potential. This comprehensive review navigates the landscape of adhesive hydrogels in cartilage repair, discussing identified challenges, shortcomings of current treatment options, and unique advantages of adhesive hydrogel products and scaffolds. While emphasizing the critical need for in situ lateral integration with surrounding tissues, we dissect current limitations and outline future perspectives for hydrogel scaffolds in cartilage repair. Moreover, we examine the clinical translation pathway and regulatory considerations specific to adhesive hydrogels. Overall, this review synthesizes the existing insights and knowledge gaps and highlights directions for future research regarding adhesive hydrogel-based devices in advancing cartilage tissue engineering.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Philippe
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Scalzone A, Sanjurjo-Rodríguez C, Berlinguer-Palmini R, Dickinson AM, Jones E, Wang XN, Crossland RE. Functional and Molecular Analysis of Human Osteoarthritic Chondrocytes Treated with Bone Marrow-Derived MSC-EVs. Bioengineering (Basel) 2024; 11:388. [PMID: 38671809 PMCID: PMC11047960 DOI: 10.3390/bioengineering11040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, causing impaired mobility. There are currently no effective therapies other than palliative treatment. Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have shown promise in attenuating OA progression, promoting chondral regeneration, and modulating joint inflammation. However, the precise molecular mechanism of action driving their beneficial effects has not been fully elucidated. In this study, we analyzed MSC-EV-treated human OA chondrocytes (OACs) to assess viability, proliferation, migration, cytokine and catabolic protein expression, and microRNA and mRNA profiles. We observed that MSC-EV-treated OACs displayed increased metabolic activity, proliferation, and migration compared to the controls. They produced decreased proinflammatory (Il-8 and IFN-γ) and increased anti-inflammatory (IL-13) cytokines, and lower levels of MMP13 protein coupled with reduced expression of MMP13 mRNA, as well as negative microRNA regulators of chondrogenesis (miR-145-5p and miR-21-5p). In 3D models, MSC-EV-treated OACs exhibited enhanced chondrogenesis-promoting features (elevated sGAG, ACAN, and aggrecan). MSC-EV treatment also reversed the pathological impact of IL-1β on chondrogenic gene expression and extracellular matrix component (ECM) production. Finally, MSC-EV-treated OACs demonstrated the enhanced expression of genes associated with cartilage function, collagen biosynthesis, and ECM organization and exhibited a signature of 24 differentially expressed microRNAs, associated with chondrogenesis-associated pathways and ECM interactions. In conclusion, our data provide new insights on the potential mechanism of action of MSC-EVs as a treatment option for early-stage OA, including transcriptomic analysis of MSC-EV-treated OA, which may pave the way for more targeted novel therapeutics.
Collapse
Affiliation(s)
- Annachiara Scalzone
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Centre for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | - Clara Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | | | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Xiao-Nong Wang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Extracellular Vesicles Secreted by TGF-β1-Treated Mesenchymal Stem Cells Promote Fracture Healing by SCD1-Regulated Transference of LRP5. Stem Cells Int 2023; 2023:4980871. [PMID: 36970598 PMCID: PMC10033213 DOI: 10.1155/2023/4980871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Bone fracture repair is a multiphased regenerative process requiring paracrine intervention throughout the healing process. Mesenchymal stem cells (MSCs) play a crucial role in cell-to-cell communication and the regeneration of tissue, but their transplantation is difficult to regulate. The paracrine processes that occur in MSC-derived extracellular vesicles (MSC-EVs) have been exploited for this study. The primary goal was to determine whether EVs secreted by TGF-β1-stimulated MSCs (MSCTGF-β1-EVs) exhibit greater effects on bone fracture healing than EVs secreted by PBS-treated MSCs (MSCPBS-EVs). Our research was conducted using an in vivo bone fracture model and in vitro experiments, which included assays to measure cell proliferation, migration, and angiogenesis, as well as in vivo and in vitro gain/loss of function studies. In this study, we were able to confirm that SCD1 expression and MSC-EVs can be induced by TGF-β1. After MSCTGF-β1-EVs are transplanted in mice, bone fracture repair is accelerated. MSCTGF-β1-EV administration stimulates human umbilical vein endothelial cell (HUVEC) angiogenesis, proliferation, and migration in vitro. Furthermore, we were able to demonstrate that SCD1 plays a functional role in the process of MSCTGF-β1-EV-mediated bone fracture healing and HUVEC angiogenesis, proliferation, and migration. Additionally, using a luciferase reporter assay and chromatin immunoprecipitation studies, we discovered that SREBP-1 targets the promoter of the SCD1 gene specifically. We also discovered that the EV-SCD1 protein could stimulate proliferation, angiogenesis, and migration in HUVECs through interactions with LRP5. Our findings provide evidence of a mechanism whereby MSCTGF-β1-EVs enhance bone fracture repair by regulating the expression of SCD1. The use of TGF-β1 preconditioning has the potential to maximize the therapeutic effects of MSC-EVs in the treatment of bone fractures.
Collapse
|
4
|
Alcaide-Ruggiero L, Molina-Hernández V, Morgaz J, Fernández-Sarmiento JA, Granados MM, Navarrete-Calvo R, Pérez J, Quirós-Carmona S, Carrillo JM, Cugat R, Domínguez JM. Particulate cartilage and platelet-rich plasma treatment for knee chondral defects in sheep. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-022-07295-7. [PMID: 36598512 DOI: 10.1007/s00167-022-07295-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Articular cartilage is vulnerable to multiple types of damage and it has limited reparative and regenerative capacities due to its absence of vascularity. Although a large number of therapeutic strategies exist to treat chondral defects, they have some limitations, such as fibrocartilage formation. Therefore, the goal of the present study was to evaluate the chondrogenic regenerative properties of an autologous-made matrix of particulated cartilage and platelet-rich plasma (PACI + PRP) implantation for the treatment of full-thickness chondral defects in sheep. METHODS A full-thickness 8 mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in both knees of 16 sheep. The right knees of all animals were treated with particulated autograft cartilage implantation and platelet-rich plasma, while the left knees were injected with Ringer's lactate solution or hyaluronic acid. The sheep were killed 9 or 18 months after surgery. Macroscopic evaluations were performed using three different scoring systems, and histopathological evaluations were performed using a modified scoring system based on different scoring systems. RESULTS The PACI + PRP groups showed statistically significant differences in the percentage of defect repair and chondrocytes in the newly formed cartilage tissue at 18 months compared to 9 months. CONCLUSIONS The results suggest that macroscopic appearance, histological structure and chondrocyte repair were improved when using PACI + PRP treatment for chondral defects, producing an outcome similar to the surrounding healthy cartilage. PACI + PRP is a totally autologous, easy, and unexpensive treatment that can be performed in one-step procedure and is useful as a therapeutic option for knee chondral defects.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.
| | - Juan Morgaz
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | | | - María M Granados
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Navarrete-Calvo
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Setefilla Quirós-Carmona
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José M Carrillo
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Departamento de Medicina y Cirugía Animal, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, Barcelona, Spain.,Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, Barcelona, Spain
| | - Juan M Domínguez
- Departamento de Medicina y Cirugía Animal. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Fundación García Cugat para Investigación Biomédica, Barcelona, Spain
| |
Collapse
|
5
|
Sakhrani N, Stefani RM, Setti S, Cadossi R, Ateshian GA, Hung CT. Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:12406. [PMID: 36970107 PMCID: PMC10035757 DOI: 10.3390/app122312406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury. A significant challenge remains with the repair properties at the graft-host tissue interface as proper integration is critical toward restoring normal load distribution across the joint. A key to addressing poor tissue integration may involve optimizing mobilization of fibroblast-like synoviocytes (FLS) that exhibit chondrogenic potential and are derived from the adjacent synovium, the specialized connective tissue membrane that envelops the diarthrodial joint. Synovium-derived cells have been directly implicated in the native repair response of articular cartilage. Electrotherapeutics hold potential as low-cost, low-risk, non-invasive adjunctive therapies for promoting cartilage healing via cell-mediated repair. Pulsed electromagnetic fields (PEMFs) and applied direct current (DC) electric fields (EFs) via galvanotaxis are two potential therapeutic strategies to promote cartilage repair by stimulating the migration of FLS within a wound or defect site. PEMF chambers were calibrated to recapitulate clinical standards (1.5 ± 0.2 mT, 75 Hz, 1.3 ms duration). PEMF stimulation promoted bovine FLS migration using a 2D in vitro scratch assay to assess the rate of wound closure following cruciform injury. Galvanotaxis DC EF stimulation assisted FLS migration within a collagen hydrogel matrix in order to promote cartilage repair. A novel tissue-scale bioreactor capable of applying DC EFs in sterile culture conditions to 3D constructs was designed in order to track the increased recruitment of synovial repair cells via galvanotaxis from intact bovine synovium explants to the site of a cartilage wound injury. PEMF stimulation further modulated FLS migration into the bovine cartilage defect region. Biochemical composition, histological analysis, and gene expression revealed elevated GAG and collagen levels following PEMF treatment, indicative of its pro-anabolic effect. Together, PEMF and galvanotaxis DC EF modulation are electrotherapeutic strategies with complementary repair properties. Both procedures may enable direct migration or selective homing of target cells to defect sites, thus augmenting natural repair processes for improving cartilage repair and healing.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Zheng K, Ma Y, Chiu C, Pang Y, Gao J, Zhang C, Du D. Co-culture pellet of human Wharton's jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res Ther 2022; 13:386. [PMID: 35907866 PMCID: PMC9338579 DOI: 10.1186/s13287-022-03094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seeding cells are key factors in cell-based cartilage tissue regeneration. Monoculture of either chondrocyte or mesenchymal stem cells has several limitations. In recent years, co-culture strategies have provided potential solutions. In this study, directly co-cultured rat costal chondrocytes (CCs) and human Wharton's jelly mesenchymal stem (hWJMSCs) cells were evaluated as a candidate to regenerate articular cartilage. METHODS Rat CCs are directly co-cultured with hWJMSCs in a pellet model at different ratios (3:1, 1:1, 1:3) for 21 days. The monoculture pellets were used as controls. RT-qPCR, biochemical assays, histological staining and evaluations were performed to analyze the chondrogenic differentiation of each group. The 1:1 ratio co-culture pellet group together with monoculture controls were implanted into the osteochondral defects made on the femoral grooves of the rats for 4, 8, 12 weeks. Then, macroscopic and histological evaluations were performed. RESULTS Compared to rat CCs pellet group, 3:1 and 1:1 ratio group demonstrated similar extracellular matrix production but less hypertrophy intendency. Immunochemistry staining found the consistent results. RT-PCR analysis indicated that chondrogenesis was promoted in co-cultured rat CCs, while expressions of hypertrophic genes were inhibited. However, hWJMSCs showed only slightly improved in chondrogenesis but not significantly different in hypertrophic expressions. In vivo experiments showed that all the pellets filled the defects but co-culture pellets demonstrated reduced hypertrophy, better surrounding cartilage integration and appropriate subchondral bone remodeling. CONCLUSION Co-culture of rat CCs and hWJMSCs demonstrated stable chondrogenic phenotype and decreased hypertrophic intendency in both vitro and vivo. These results suggest this co-culture combination as a promising candidate in articular cartilage regeneration.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
7
|
An artificial membrane binding protein-polymer surfactant nanocomplex facilitates stem cell adhesion to the cartilage extracellular matrix. Biomaterials 2021; 276:120996. [PMID: 34280823 DOI: 10.1016/j.biomaterials.2021.120996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
One of the major challenges within the emerging field of injectable stem cell therapies for articular cartilage (AC) repair is the retention of sufficient viable cell numbers at the site of injury. Even when delivered via intra-articular injection, the number of stem cells retained at the target is often low and declines rapidly over time. To address this challenge, an artificial plasma membrane binding nanocomplex was rationally designed to provide human mesenchymal stem cells (hMSCs) with increased adhesion to articular cartilage tissue. The nanocomplex comprises the extracellular matrix (ECM) binding peptide of a placenta growth factor-2 (PlGF-2) fused to a supercharged green fluorescent protein (scGFP), which was electrostatically conjugated to anionic polymer surfactant chains to yield [S-]scGFP_PlGF2. The [S-]scGFP_PlGF2 nanocomplex spontaneously inserts into the plasma membrane of hMSCs, is not cytotoxic, and does not inhibit differentiation. The nanocomplex-modified hMSCs showed a significant increase in affinity for immobilised collagen II, a key ECM protein of cartilage, in both static and dynamic cell adhesion assays. Moreover, the cells adhered strongly to bovine ex vivo articular cartilage explants resulting in high cell numbers. These findings suggest that the re-engineering of hMSC membranes with [S-]scGFP_PlGF2 could improve the efficacy of injectable stem cell-based therapies for the treatment of damaged articular cartilage.
Collapse
|
8
|
Basoli V, Della Bella E, Kubosch EJ, Alini M, Stoddart MJ. Effect of expansion media and fibronectin coating on growth and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Sci Rep 2021; 11:13089. [PMID: 34158528 PMCID: PMC8219706 DOI: 10.1038/s41598-021-92270-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the field of regenerative medicine, considerable advances have been made from the technological and biological point of view. However, there are still large gaps to be filled regarding translation and application of mesenchymal stromal cell (MSC)-based therapies into clinical practice. Indeed, variables such as cell type, unpredictable donor variation, and expansion/differentiation methods lead to inconsistencies. Most protocols use bovine serum (FBS) derivatives during MSC expansion. However, the xenogeneic risks associated with FBS limits the use of MSC-based products in clinical practice. Herein we compare a chemically defined, xenogeneic-free commercial growth medium with a conventional medium containing 10% FBS and 5 ng/ml FGF2. Furthermore, the effect of a fibronectin-coated growth surface was investigated. The effect of the different culture conditions on chondrogenic commitment was assessed by analyzing matrix deposition and gene expression of common chondrogenic markers. Chondrogenic differentiation potential was similar between the FBS-containing αMEM and the chemically defined medium with fibronectin coating. On the contrary, the use of fibronectin coating with FBS-containing medium appeared to reduce the differentiation potential of MSCs. Moreover, cells that were poorly responsive to in vitro chondrogenic stimuli were shown to improve their differentiation potential after expansion in a TGF-β1 containing medium. In conclusion, the use of a xenogeneic-free medium provides a suitable alternative for human bone marrow MSC expansion, due the capability to maintain cell characteristic and potency. To further improve chondrogenic potential of BMSCs, priming the cells with TGF-β1 during expansion is a promising strategy.
Collapse
Affiliation(s)
- Valentina Basoli
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Elena Della Bella
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany
| | - Mauro Alini
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Martin J Stoddart
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland. .,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Heparan Sulfate Deficiency in Cartilage: Enhanced BMP-Sensitivity, Proteoglycan Production and an Anti-Apoptotic Expression Signature after Loading. Int J Mol Sci 2021; 22:ijms22073726. [PMID: 33918436 PMCID: PMC8038223 DOI: 10.3390/ijms22073726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) represents one major cause of disability worldwide still evading efficient pharmacological or cellular therapies. Severe degeneration of extracellular cartilage matrix precedes the loss of mobility and disabling pain perception in affected joints. Recent studies showed that a reduced heparan sulfate (HS) content protects cartilage from degradation in OA-animal models of joint destabilization but the underlying mechanisms remained unclear. We aimed to clarify whether low HS-content alters the mechano-response of chondrocytes and to uncover pathways relevant for HS-related chondro-protection in response to loading. Tissue-engineered cartilage with HS-deficiency was generated from rib chondrocytes of mice carrying a hypomorphic allele of Exostosin 1 (Ext1), one of the main HS-synthesizing enzymes, and wildtype (WT) littermate controls. Engineered cartilage matured for 2 weeks was exposed to cyclic unconfined compression in a bioreactor. The molecular loading response was determined by transcriptome profiling, bioinformatic data processing, and qPCR. HS-deficient chondrocytes expressed 3-6% of WT Ext1-mRNA levels. Both groups similarly raised Sox9, Col2a1 and Acan levels during maturation. However, HS-deficient chondrocytes synthesized and deposited 50% more GAG/DNA. TGFβ and FGF2-sensitivity of Ext1gt/gt chondrocytes was similar to WT cells but their response to BMP-stimulation was enhanced. Loading induced similar activation of mechano-sensitive ERK and P38-signaling in WT and HS-reduced chondrocytes. Transcriptome analysis reflected regulation of cell migration as major load-induced biological process with similar stimulation of common (Fosl1, Itgα5, Timp1, and Ngf) as well as novel mechano-regulated genes (Inhba and Dhrs9). Remarkably, only Ext1-hypomorphic cartilage responded to loading by an expression signature of negative regulation of apoptosis with pro-apoptotic Bnip3 being selectively down-regulated. HS-deficiency enhanced BMP-sensitivity, GAG-production and fostered an anti-apoptotic expression signature after loading, all of which may protect cartilage from load-induced erosion.
Collapse
|
10
|
Bayasgalan T, Csemer A, Kovacs A, Pocsai K, Pal B. Topographical Organization of M-Current on Dorsal and Median Raphe Serotonergic Neurons. Front Cell Neurosci 2021; 15:614947. [PMID: 33716672 PMCID: PMC7947297 DOI: 10.3389/fncel.2021.614947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Dorsal and median raphe nuclei (DR and MR, respectively) are members of the reticular activating system and play important role in the regulation of the sleep-wakefulness cycle, movement, and affective states. M-current is a voltage-gated potassium current under the control of neuromodulatory mechanisms setting neuronal excitability. Our goal was to determine the proportion of DR and MR serotonergic neurons possessing M-current and whether they are organized topographically. Electrophysiological parameters of raphe serotonergic neurons influenced by this current were also investigated. We performed slice electrophysiology on genetically identified serotonergic neurons. Neurons with M-current are located rostrally in the DR and dorsally in the MR. M-current determines firing rate, afterhyperpolarization amplitude, and adaptation index (AI) of these neurons, but does not affect input resistance, action potential width, and high threshold oscillations.These findings indicate that M-current has a strong impact on firing properties of certain serotonergic neuronal subpopulations and it might serve as an effective contributor to cholinergic and local serotonergic neuromodulatory actions.
Collapse
Affiliation(s)
- Tsogbadrakh Bayasgalan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kovacs
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Pal
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|