1
|
Navarrete-León C, Doherty A, Savvidis S, Gerli MFM, Piredda G, Astolfo A, Bate D, Cipiccia S, Hagen CK, Olivo A, Endrizzi M. X-ray phase-contrast microtomography of soft tissues using a compact laboratory system with two-directional sensitivity. OPTICA 2023; 10:880-887. [PMID: 37841216 PMCID: PMC10575607 DOI: 10.1364/optica.487270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023]
Abstract
X-ray microtomography is a nondestructive, three-dimensional inspection technique applied across a vast range of fields and disciplines, ranging from research to industrial, encompassing engineering, biology, and medical research. Phase-contrast imaging extends the domain of application of x-ray microtomography to classes of samples that exhibit weak attenuation, thus appearing with poor contrast in standard x-ray imaging. Notable examples are low-atomic-number materials, like carbon-fiber composites, soft matter, and biological soft tissues. We report on a compact and cost-effective system for x-ray phase-contrast microtomography. The system features high sensitivity to phase gradients and high resolution, requires a low-power sealed x-ray tube, a single optical element, and fits in a small footprint. It is compatible with standard x-ray detector technologies: in our experiments, we have observed that single-photon counting offered higher angular sensitivity, whereas flat panels provided a larger field of view. The system is benchmarked against known-material phantoms, and its potential for soft-tissue three-dimensional imaging is demonstrated on small-animal organs: a piglet esophagus and a rat heart. We believe that the simplicity of the setup we are proposing, combined with its robustness and sensitivity, will facilitate accessing quantitative x-ray phase-contrast microtomography as a research tool across disciplines, including tissue engineering, materials science, and nondestructive testing in general.
Collapse
Affiliation(s)
- Carlos Navarrete-León
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mattia F. M. Gerli
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Giovanni Piredda
- Research Center for Microtechnology, Vorarlberg University of Applied Sciences, Hochschulstr. 1, 6850, Dornbirn, Austria
| | - Alberto Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Bate
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Nikon X-Tek Systems Ltd, Tring, Herts, HP23 4JX, UK
| | - Silvia Cipiccia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Charlotte K. Hagen
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Study on the Cytotoxic Microstructure of Titanium Dioxide Nanoparticles by X-Ray Phase-Contrast CT Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2413922. [PMID: 35992550 PMCID: PMC9356853 DOI: 10.1155/2022/2413922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
To address the problem of microstructural analysis of titania nanoparticles with high cytotoxicity, the authors propose X-ray phase-comparative CT imaging studies. In this method, the HE-stained section samples were compared with the X-ray phase-contrast CT imaging microscopic images, and 3D texture analysis was used to observe the changes in the preparation of hepatocyte microstructures in the two groups. The results show that X-ray phase-contrast CT imaging microscopic images and their larger image size are closely related to HE staining images, and X-ray phase-contrast CT microscopic images can observe important data of hepatocytes from multiple angles. The ship skeleton extraction method based on the endpoint limit also has advantages over traditional algorithms in extraction accuracy and can provide more 3D feature files, confirming the growth and transformation of normal hepatocytes into hepatocyte cytotoxic microstructures. The distribution effect of using the ensemble process is better than the simple 2D feature set and 3D feature set, and the overall accuracy is improved; the result distribution of the tree determination and random forest methods is also better than that of the support vector machine method. The experimental results show that the X-ray phase-contrast CT images can highlight the 2D and 3D imaging features of the hepatotoxic microstructure of TiO2 nanoparticles and provide data for quantitative analysis.
Collapse
|
3
|
Phase-Contrast and Dark-Field Imaging. J Imaging 2018. [DOI: 10.3390/jimaging4100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Very early, in 1896, Wilhelm Conrad Röntgen, the founding father of X-rays, attempted to measure diffraction and refraction by this new kind of radiation, in vain. Only 70 years later, these effects were measured by Ulrich Bonse and Michael Hart who used them to make full-field images of biological specimen, coining the term phase-contrast imaging. Yet, another 30 years passed until the Talbot effect was rediscovered for X-radiation, giving rise to a micrograting based interferometer, replacing the Bonse–Hart interferometer, which relied on a set of four Laue-crystals for beam splitting and interference. By merging the Lau-interferometer with this Talbot-interferometer, another ten years later, measuring X-ray refraction and X-ray scattering full-field and in cm-sized objects (as Röntgen had attempted 110 years earlier) became feasible in every X-ray laboratory around the world. Today, now that another twelve years have passed and we are approaching the 125th jubilee of Röntgen’s discovery, neither Laue-crystals nor microgratings are a necessity for sensing refraction and scattering by X-rays. Cardboard, steel wool, and sandpaper are sufficient for extracting these contrasts from transmission images, using the latest image reconstruction algorithms. This advancement and the ever rising number of applications for phase-contrast and dark-field imaging prove to what degree our understanding of imaging physics as well as signal processing have advanced since the advent of X-ray physics, in particular during the past two decades. The discovery of the electron, as well as the development of electron imaging technology, has accompanied X-ray physics closely along its path, both modalities exploring the applications of new dark-field contrast mechanisms these days. Materials science, life science, archeology, non-destructive testing, and medicine are the key faculties which have already integrated these new imaging devices, using their contrast mechanisms in full. This special issue “Phase-Contrast and Dark-field Imaging” gives us a broad yet very to-the-point glimpse of research and development which are currently taking place in this very active field. We find reviews, applications reports, and methodological papers of very high quality from various groups, most of which operate X-ray scanners which comprise these new imaging modalities.
Collapse
|