1
|
Mylona E, Zaridis DI, Kalantzopoulos CΝ, Tachos NS, Regge D, Papanikolaou N, Tsiknakis M, Marias K, Fotiadis DI. Optimizing radiomics for prostate cancer diagnosis: feature selection strategies, machine learning classifiers, and MRI sequences. Insights Imaging 2024; 15:265. [PMID: 39495422 DOI: 10.1186/s13244-024-01783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Radiomics-based analyses encompass multiple steps, leading to ambiguity regarding the optimal approaches for enhancing model performance. This study compares the effect of several feature selection methods, machine learning (ML) classifiers, and sources of radiomic features, on models' performance for the diagnosis of clinically significant prostate cancer (csPCa) from bi-parametric MRI. METHODS Two multi-centric datasets, with 465 and 204 patients each, were used to extract 1246 radiomic features per patient and MRI sequence. Ten feature selection methods, such as Boruta, mRMRe, ReliefF, recursive feature elimination (RFE), random forest (RF) variable importance, L1-lasso, etc., four ML classifiers, namely SVM, RF, LASSO, and boosted generalized linear model (GLM), and three sets of radiomics features, derived from T2w images, ADC maps, and their combination, were used to develop predictive models of csPCa. Their performance was evaluated in a nested cross-validation and externally, using seven performance metrics. RESULTS In total, 480 models were developed. In nested cross-validation, the best model combined Boruta with Boosted GLM (AUC = 0.71, F1 = 0.76). In external validation, the best model combined L1-lasso with boosted GLM (AUC = 0.71, F1 = 0.47). Overall, Boruta, RFE, L1-lasso, and RF variable importance were the top-performing feature selection methods, while the choice of ML classifier didn't significantly affect the results. The ADC-derived features showed the highest discriminatory power with T2w-derived features being less informative, while their combination did not lead to improved performance. CONCLUSION The choice of feature selection method and the source of radiomic features have a profound effect on the models' performance for csPCa diagnosis. CRITICAL RELEVANCE STATEMENT This work may guide future radiomic research, paving the way for the development of more effective and reliable radiomic models; not only for advancing prostate cancer diagnostic strategies, but also for informing broader applications of radiomics in different medical contexts. KEY POINTS Radiomics is a growing field that can still be optimized. Feature selection method impacts radiomics models' performance more than ML algorithms. Best feature selection methods: RFE, LASSO, RF, and Boruta. ADC-derived radiomic features yield more robust models compared to T2w-derived radiomic features.
Collapse
Affiliation(s)
- Eugenia Mylona
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Dimitrios I Zaridis
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
- Biomedical Engineering Laboratory, School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Charalampos Ν Kalantzopoulos
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Nikolaos S Tachos
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece
| | - Daniele Regge
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Manolis Tsiknakis
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, GR 70013, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR 71004, Heraklion, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory, Institute of Computer Science, FORTH, GR 70013, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR 71004, Heraklion, Greece
| | - Dimitrios I Fotiadis
- Biomedical Research Institute, FORTH, GR 45110, Ioannina, Greece.
- Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Rai HM, Yoo J, Atif Moqurrab S, Dashkevych S. Advancements in traditional machine learning techniques for detection and diagnosis of fatal cancer types: Comprehensive review of biomedical imaging datasets. MEASUREMENT 2024; 225:114059. [DOI: 10.1016/j.measurement.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
3
|
Khanfari H, Mehranfar S, Cheki M, Mohammadi Sadr M, Moniri S, Heydarheydari S, Rezaeijo SM. Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI. BMC Med Imaging 2023; 23:195. [PMID: 37993801 PMCID: PMC10664625 DOI: 10.1186/s12880-023-01140-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The purpose of this study is to investigate the use of radiomics and deep features obtained from multiparametric magnetic resonance imaging (mpMRI) for grading prostate cancer. We propose a novel approach called multi-flavored feature extraction or tensor, which combines four mpMRI images using eight different fusion techniques to create 52 images or datasets for each patient. We evaluate the effectiveness of this approach in grading prostate cancer and compare it to traditional methods. METHODS We used the PROSTATEx-2 dataset consisting of 111 patients' images from T2W-transverse, T2W-sagittal, DWI, and ADC images. We used eight fusion techniques to merge T2W, DWI, and ADC images, namely Laplacian Pyramid, Ratio of the low-pass pyramid, Discrete Wavelet Transform, Dual-Tree Complex Wavelet Transform, Curvelet Transform, Wavelet Fusion, Weighted Fusion, and Principal Component Analysis. Prostate cancer images were manually segmented, and radiomics features were extracted using the Pyradiomics library in Python. We also used an Autoencoder for deep feature extraction. We used five different feature sets to train the classifiers: all radiomics features, all deep features, radiomics features linked with PCA, deep features linked with PCA, and a combination of radiomics and deep features. We processed the data, including balancing, standardization, PCA, correlation, and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Finally, we used nine classifiers to classify different Gleason grades. RESULTS Our results show that the SVM classifier with deep features linked with PCA achieved the most promising results, with an AUC of 0.94 and a balanced accuracy of 0.79. Logistic regression performed best when using only the deep features, with an AUC of 0.93 and balanced accuracy of 0.76. Gaussian Naive Bayes had lower performance compared to other classifiers, while KNN achieved high performance using deep features linked with PCA. Random Forest performed well with the combination of deep features and radiomics features, achieving an AUC of 0.94 and balanced accuracy of 0.76. The Voting classifiers showed higher performance when using only the deep features, with Voting 2 achieving the highest performance, with an AUC of 0.95 and balanced accuracy of 0.78. CONCLUSION Our study concludes that the proposed multi-flavored feature extraction or tensor approach using radiomics and deep features can be an effective method for grading prostate cancer. Our findings suggest that deep features may be more effective than radiomics features alone in accurately classifying prostate cancer.
Collapse
Affiliation(s)
- Hasan Khanfari
- Department of Mechanical Engineering, Petroleum University of Technology, Ahvaz, Iran
| | - Saeed Mehranfar
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohsen Cheki
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Mohammadi Sadr
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samir Moniri
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahel Heydarheydari
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Chaddad A, Tan G, Liang X, Hassan L, Rathore S, Desrosiers C, Katib Y, Niazi T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel) 2023; 15:3839. [PMID: 37568655 PMCID: PMC10416937 DOI: 10.3390/cancers15153839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The use of multiparametric magnetic resonance imaging (mpMRI) has become a common technique used in guiding biopsy and developing treatment plans for prostate lesions. While this technique is effective, non-invasive methods such as radiomics have gained popularity for extracting imaging features to develop predictive models for clinical tasks. The aim is to minimize invasive processes for improved management of prostate cancer (PCa). This study reviews recent research progress in MRI-based radiomics for PCa, including the radiomics pipeline and potential factors affecting personalized diagnosis. The integration of artificial intelligence (AI) with medical imaging is also discussed, in line with the development trend of radiogenomics and multi-omics. The survey highlights the need for more data from multiple institutions to avoid bias and generalize the predictive model. The AI-based radiomics model is considered a promising clinical tool with good prospects for application.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Guina Tan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Xiaojuan Liang
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Lama Hassan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | | | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Yousef Katib
- Department of Radiology, Taibah University, Al Madinah 42361, Saudi Arabia
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
5
|
Manikantan K, Jaganathan S. A Model for Diagnosing Autism Patients Using Spatial and Statistical Measures Using rs-fMRI and sMRI by Adopting Graphical Neural Networks. Diagnostics (Basel) 2023; 13:1143. [PMID: 36980452 PMCID: PMC10047680 DOI: 10.3390/diagnostics13061143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This article proposes a model to diagnose autism patients using graphical neural networks. A graphical neural network relates the subjects (nodes) using the features (edges). In our model, radiomic features obtained from sMRI are used as edges, and spatial-temporal data obtained through rs-fMRI are used as nodes. The similarity between first-order and texture features from the sMRI data of subjects are derived using radiomics to construct the edges of a graph. The features from brain summaries are assembled and learned using 3DCNN to represent the features of each node of the graph. Using the structural similarities of the brain rather than phenotypic data or graph kernel functions provides better accuracy. The proposed model was applied to a standard dataset, ABIDE, and it was shown that the classification results improved with the use of both spatial (sMRI) and statistical measures (brain summaries of rs-fMRI) instead of using only medical images.
Collapse
|
6
|
Nematollahi H, Moslehi M, Aminolroayaei F, Maleki M, Shahbazi-Gahrouei D. Diagnostic Performance Evaluation of Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer with Supervised Machine Learning Methods. Diagnostics (Basel) 2023; 13:diagnostics13040806. [PMID: 36832294 PMCID: PMC9956028 DOI: 10.3390/diagnostics13040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men. Its early and correct diagnosis is of particular importance to controlling and preventing the disease from spreading to other tissues. Artificial intelligence and machine learning have effectively detected and graded several cancers, in particular prostate cancer. The purpose of this review is to show the diagnostic performance (accuracy and area under the curve) of supervised machine learning algorithms in detecting prostate cancer using multiparametric MRI. A comparison was made between the performances of different supervised machine-learning methods. This review study was performed on the recent literature sourced from scientific citation websites such as Google Scholar, PubMed, Scopus, and Web of Science up to the end of January 2023. The findings of this review reveal that supervised machine learning techniques have good performance with high accuracy and area under the curve for prostate cancer diagnosis and prediction using multiparametric MR imaging. Among supervised machine learning methods, deep learning, random forest, and logistic regression algorithms appear to have the best performance.
Collapse
|
7
|
Sansone M, Fusco R, Grassi F, Gatta G, Belfiore MP, Angelone F, Ricciardi C, Ponsiglione AM, Amato F, Galdiero R, Grassi R, Granata V, Grassi R. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Curr Oncol 2023; 30:839-853. [PMID: 36661713 PMCID: PMC9858566 DOI: 10.3390/curroncol30010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND breast cancer (BC) is the world's most prevalent cancer in the female population, with 2.3 million new cases diagnosed worldwide in 2020. The great efforts made to set screening campaigns, early detection programs, and increasingly targeted treatments led to significant improvement in patients' survival. The Full-Field Digital Mammograph (FFDM) is considered the gold standard method for the early diagnosis of BC. From several previous studies, it has emerged that breast density (BD) is a risk factor in the development of BC, affecting the periodicity of screening plans present today at an international level. OBJECTIVE in this study, the focus is the development of mammographic image processing techniques that allow the extraction of indicators derived from textural patterns of the mammary parenchyma indicative of BD risk factors. METHODS a total of 168 patients were enrolled in the internal training and test set while a total of 51 patients were enrolled to compose the external validation cohort. Different Machine Learning (ML) techniques have been employed to classify breasts based on the values of the tissue density. Textural features were extracted only from breast parenchyma with which to train classifiers, thanks to the aid of ML algorithms. RESULTS the accuracy of different tested classifiers varied between 74.15% and 93.55%. The best results were reached by a Support Vector Machine (accuracy of 93.55% and a percentage of true positives and negatives equal to TPP = 94.44% and TNP = 92.31%). The best accuracy was not influenced by the choice of the features selection approach. Considering the external validation cohort, the SVM, as the best classifier with the 7 features selected by a wrapper method, showed an accuracy of 0.95, a sensitivity of 0.96, and a specificity of 0.90. CONCLUSIONS our preliminary results showed that the Radiomics analysis and ML approach allow us to objectively identify BD.
Collapse
Affiliation(s)
- Mario Sansone
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Francesca Angelone
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Carlo Ricciardi
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Francesco Amato
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberto Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| |
Collapse
|