1
|
Lareyre F, Mialhe C, Nasr B, Poggi E, Lorenzo GD, Rajhi K, Chaudhuri A, Raffort J. Extended and augmented reality in vascular surgery: Opportunities and challenges. Semin Vasc Surg 2024; 37:321-325. [PMID: 39277348 DOI: 10.1053/j.semvascsurg.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Extended reality has brought new opportunities for medical imaging visualization and analysis. It regroups various subfields, including virtual reality, augmented reality, and mixed reality. Various applications have been proposed for surgical practice, as well as education and training. The aim of this review was to summarize current applications of extended reality and augmented reality in vascular surgery, highlighting potential benefits, pitfalls, limitations, and perspectives on improvement.
Collapse
Affiliation(s)
- Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France; Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Claude Mialhe
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France
| | - Bahaa Nasr
- Univ Brest, Institut National de la Santé et de la Recherche Médicale, L'Institut Mines-Télécom-Atlantique, UMR1011 Laboratoire de Traitement de L'information Médicale, Vascular and Endovascular Surgery Department, Centre Hospitalier Universitaire, Cavale Blanche, Brest, France
| | - Elise Poggi
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France
| | - Gilles Di Lorenzo
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France
| | - Khalid Rajhi
- Department of Vascular and Endovascular Surgery, Jazan Specialist Hospital, Jazan, Saudi Arabia
| | - Arindam Chaudhuri
- Bedfordshire - Milton Keynes Vascular Centre, Bedfordshire Hospitals, National Health Service Foundation Trust, Bedford, United Kingdom
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France; Department of Clinical Biochemistry, Hôpital Pasteur, Pavillon J, 30, Avenue de la Voie Romaine, 06001 Nice Cedex 1, France.
| |
Collapse
|
2
|
Hatzl J, Henning D, Böckler D, Hartmann N, Meisenbacher K, Uhl C. Comparing Different Registration and Visualization Methods for Navigated Common Femoral Arterial Access-A Phantom Model Study Using Mixed Reality. J Imaging 2024; 10:76. [PMID: 38667974 PMCID: PMC11051344 DOI: 10.3390/jimaging10040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Mixed reality (MxR) enables the projection of virtual three-dimensional objects into the user's field of view via a head-mounted display (HMD). This phantom model study investigated three different workflows for navigated common femoral arterial (CFA) access and compared it to a conventional sonography-guided technique as a control. A total of 160 punctures were performed by 10 operators (5 experts and 5 non-experts). A successful CFA puncture was defined as puncture at the mid-level of the femoral head with the needle tip at the central lumen line in a 0° coronary insertion angle and a 45° sagittal insertion angle. Positional errors were quantified using cone-beam computed tomography following each attempt. Mixed effect modeling revealed that the distance from the needle entry site to the mid-level of the femoral head is significantly shorter for navigated techniques than for the control group. This highlights that three-dimensional visualization could increase the safety of CFA access. However, the navigated workflows are infrastructurally complex with limited usability and are associated with relevant cost. While navigated techniques appear as a potentially beneficial adjunct for safe CFA access, future developments should aim to reduce workflow complexity, avoid optical tracking systems, and offer more pragmatic methods of registration and instrument tracking.
Collapse
Affiliation(s)
- Johannes Hatzl
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Henning
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Niklas Hartmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Katrin Meisenbacher
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christian Uhl
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
3
|
Javvaji CK, Reddy H, Vagha JD, Taksande A, Kommareddy A, Reddy NS. Immersive Innovations: Exploring the Diverse Applications of Virtual Reality (VR) in Healthcare. Cureus 2024; 16:e56137. [PMID: 38618363 PMCID: PMC11016331 DOI: 10.7759/cureus.56137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Virtual reality (VR) has experienced a remarkable evolution over recent decades, evolving from its initial applications in specific military domains to becoming a ubiquitous and easily accessible technology. This thorough review delves into the intricate domain of VR within healthcare, seeking to offer a comprehensive understanding of its historical evolution, theoretical foundations, and current adoption status. The examination explores the advantages of VR in enhancing the educational experience for medical students, with a particular focus on skill acquisition and retention. Within this exploration, the review dissects the applications of VR across diverse medical disciplines, highlighting its role in surgical training and anatomy/physiology education. While navigating the expansive landscape of VR, the review addresses challenges related to technology and pedagogy, providing insights into overcoming technical hurdles and seamlessly integrating VR into healthcare practices. Additionally, the review looks ahead to future directions and emerging trends, examining the potential impact of technological advancements and innovative applications in healthcare. This review illuminates the transformative potential of VR as a tool poised to revolutionize healthcare practices.
Collapse
Affiliation(s)
- Chaitanya Kumar Javvaji
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshitha Reddy
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anirudh Kommareddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Naramreddy Sudheesh Reddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Alonso-Felipe M, Aguiar-Pérez JM, Pérez-Juárez MÁ, Baladrón C, Peral-Oliveira J, Amat-Santos IJ. Application of Mixed Reality to Ultrasound-guided Femoral Arterial Cannulation During Real-time Practice in Cardiac Interventions. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:527-541. [PMID: 37927377 PMCID: PMC10620372 DOI: 10.1007/s41666-023-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 11/07/2023]
Abstract
Mixed reality opens interesting possibilities as it allows physicians to interact with both, the real physical and the virtual computer-generated environment and objects, in a powerful way. A mixed reality system, based in the HoloLens 2 glasses, has been developed to assist cardiologists in a quite complex interventional procedure: the ultrasound-guided femoral arterial cannulations, during real-time practice in interventional cardiology. The system is divided into two modules, the transmitter module, responsible for sending medical images to HoloLens 2 glasses, and the receiver module, hosted in the HoloLens 2, which renders those medical images, allowing the practitioner to watch and manage them in a 3D environment. The system has been successfully used, between November 2021 and August 2022, in up to 9 interventions by 2 different practitioners, in a large public hospital in central Spain. The practitioners using the system confirmed it as easy to use, reliable, real-time, reachable, and cost-effective, allowing a reduction of operating times, a better control of typical errors associated to the interventional procedure, and opening the possibility to use the medical imagery produced in ubiquitous e-learning. These strengths and opportunities were only nuanced by the risk of potential medical complications emerging from system malfunction or operator errors when using the system (e.g., unexpected momentary lag). In summary, the proposed system can be taken as a realistic proof of concept of how mixed reality technologies can support practitioners when performing interventional and surgical procedures during real-time daily practice.
Collapse
Affiliation(s)
- Miguel Alonso-Felipe
- Data Engineering Research Group, School of Telecommunications Engineering, TSCIT Department, University of Valladolid, Valladolid, Spain
| | - Javier Manuel Aguiar-Pérez
- Data Engineering Research Group, School of Telecommunications Engineering, TSCIT Department, University of Valladolid, Valladolid, Spain
| | - María Ángeles Pérez-Juárez
- Data Engineering Research Group, School of Telecommunications Engineering, TSCIT Department, University of Valladolid, Valladolid, Spain
| | - Carlos Baladrón
- Cardiology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Peral-Oliveira
- Cardiology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Ignacio J. Amat-Santos
- Cardiology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Hatzl J, Henning D, Hartmann N, Böckler D, Uhl C. A New Method for Common Femoral Arterial Access Using a Mixed Reality-Assisted Technique on a Phantom Model. J Endovasc Ther 2023:15266028231208640. [PMID: 37916479 DOI: 10.1177/15266028231208640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE The purpose of this study was to investigate the technical feasibility and usability of a mixed reality (MiR)-assisted common femoral arterial (CFA) access technique using a sonography-assisted registration method. MATERIALS AND METHODS A total of 60 CFA punctures were performed on a phantom model by 2 observers. Thirty punctures were performed using MiR (MiR group) and 30 punctures were performed using a conventional sonography-guided access procedure (control group). In the MiR group, a virtual object was created based on a computed tomography (CT) angiography scan of the model and registered to the physical patient in an MiR environment utilizing a software prototype that allowed registration based on a sonography scan. Positional error assessment encompassed 4 measurements using cone beam CT scans: (1) distance of the needle tip to the centerline, (2) distance of the needle entry site from the mid-level of the ostium of the profound femoral artery, (3) angle of entry of the needle in coronal, and (4) sagittal planes. Technical success rates as well as positional errors were compared between both groups. In addition, the usability of the system was assessed according to the system usability scale (SUS). RESULTS Technical success was 96.7% and 100% in the MiR and control groups, respectively. The median distance between the needle tip and the centerline was 3.0 (interquartile range [IQR]: 2.0-4.6) in the MiR group and 3.2 mm (IQR: 2.3-3.9) (p=0.63) in the control group. Similarly, the median distance from the needle entry site to the mid-level of the ostium of the profound femoral artery was 3.0 mm (IQR: 2.0-5.0) in the MiR group and 4.5 mm (IQR: 2.0-7.8) (p=0.18) in the control group. The median coronal angles of needle entry were 7.5° (IQR: 6-11) and 6° (IQR: 2-12) (p=0.13), and the median sagittal angles were 50° (IQR: 47-51) and 51° (IQR: 50-55) (p<0.01) in the MiR and control groups, respectively. The mean SUS score provided by both observers was 51.3. CONCLUSION The feasibility of an MiR-assisted CFA access technique could be demonstrated on a phantom model. Further studies are needed to investigate the technique beyond phantom model experiments and in different anatomical settings. CLINICAL IMPACT This study demonstrates the technical feasibility of a Mixed-Reality-assisted common femoral arterial access procedure on a phantom model. The positional accuracy was comparable to a conventional sonography-guided technique. However, there are several limitations that need to be resolved prior to potential implementation into clinical practice. Further studies are needed to investigate its performance beyond phantom model experiments and the prototypical application requires further technical refinement to increase its usability.
Collapse
Affiliation(s)
- Johannes Hatzl
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Henning
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas Hartmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Uhl
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Yang XC, Qin YL, Xiang H, Mo W, Huang AZ, Xiang B, Xu Y, Zhu ZL. Risk Factors for Postoperative Puncture Site Bleeding after Interventional Treatment of Cerebrovascular Disease via Common Femoral Artery Puncture: A Retrospective Analysis of 710 Cases. TOHOKU J EXP MED 2023; 261:109-116. [PMID: 37407440 DOI: 10.1620/tjem.2023.j054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify the risk factors associated with puncture site bleeding following percutaneous puncture of the common femoral artery during interventional treatment of cerebrovascular disease (CVD). A retrospective analysis was conducted on 710 patients who underwent interventional treatment for CVD via femoral artery puncture. Among them, 26 individuals (3.66%) experienced bleeding at the femoral artery puncture site. Binary logistic regression analysis was performed to identify risk factors for puncture site bleeding. The impact of salt bag compression on postoperative bleeding was evaluated in patients with intermediate to high bleeding risk scores. The bleeding group showed higher blood pressure, lower platelet counts, longer prothrombin time and activated partial thromboplastin time, as well as a higher prevalence of larger vascular sheath sizes and variations in the timing of anti-coagulant and anti-platelet therapy administration. The bleeding risk score was higher in the bleeding group, indicating its predictive value for bleeding risk. Higher bleeding risk score, unstable blood pressure, repeated puncture, and serious vascular conditions were significant risk factors for puncture site bleeding. Application of salt bag compression for a duration of 2 hours reduced postoperative puncture site bleeding in patients with intermediate to high bleeding risk scores. Our study identified several significant risk factors for puncture site bleeding after cerebral vascular intervention via femoral artery puncture, including the bleeding risk score, blood pressure, repeated puncture, and vascular conditions. Implementing salt bag compression as a preventive measure can help mitigate bleeding complications in these high-risk patients.
Collapse
Affiliation(s)
- Xiu-Chun Yang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Yue-Lan Qin
- Nursing Management Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Hua Xiang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Wei Mo
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Ai-Zhen Huang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Bin Xiang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Yuan Xu
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Zhi-Lan Zhu
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
| |
Collapse
|
7
|
Tsai TY, Onuma Y, Złahoda-Huzior A, Kageyama S, Dudek D, Wang Q, Lim RP, Garg S, Poon EKW, Puskas J, Ramponi F, Jung C, Sharif F, Khokhar AA, Serruys PW. Merging virtual and physical experiences: extended realities in cardiovascular medicine. Eur Heart J 2023; 44:3311-3322. [PMID: 37350487 PMCID: PMC10499546 DOI: 10.1093/eurheartj/ehad352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Technological advancement and the COVID-19 pandemic have brought virtual learning and working into our daily lives. Extended realities (XR), an umbrella term for all the immersive technologies that merge virtual and physical experiences, will undoubtedly be an indispensable part of future clinical practice. The intuitive and three-dimensional nature of XR has great potential to benefit healthcare providers and empower patients and physicians. In the past decade, the implementation of XR into cardiovascular medicine has flourished such that it is now integrated into medical training, patient education, pre-procedural planning, intra-procedural visualization, and post-procedural care. This review article discussed how XR could provide innovative care and complement traditional practice, as well as addressing its limitations and considering its future perspectives.
Collapse
Affiliation(s)
- Tsung-Ying Tsai
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Xitun District, Taichung 40705, Taiwan
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Adriana Złahoda-Huzior
- Department of Measurement and Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Shigetaka Kageyama
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Dariusz Dudek
- Interventional Cardiology Unit, Maria Cecilia Hospital, Via Corriera, 1, 48033 Cotignola RA, Italy
- Center of Digital Medicine and Robotics, Jagiellonian University Medical College, Świętej Anny 12, 31-008 Kraków, Poland
| | - Qingdi Wang
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, 41 Victoria Parade, Fitzroy VIC 3065, Australia
| | - Ruth P Lim
- Department of Radiology and Surgery (Austin), Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, 161 Barry St, Carlton VIC 3010, Australia
- Department of Radiology, Austin Health, 145 Studley Rd, Heidelberg VIC 3084, Australia
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn BB1 2RB, UK
| | - Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, 41 Victoria Parade, Fitzroy VIC 3065, Australia
| | - John Puskas
- Department of Cardiovascular Surgery, Mount Sinai Morningside Hospital, 419 W 114th St, New York, NY 10025, United States
| | - Fabio Ramponi
- Department of Cardiovascular Surgery, Mount Sinai Morningside Hospital, 419 W 114th St, New York, NY 10025, United States
| | - Christian Jung
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University of Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Faisal Sharif
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Arif A Khokhar
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London W12 0HS, UK
| | - Patrick W Serruys
- Department of Cardiology, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
8
|
Wu J, Gao L, Shi Q, Qin C, Xu K, Jiang Z, Zhang X, Li M, Qiu J, Gu W. Accuracy Evaluation Trial of Mixed Reality-Guided Spinal Puncture Technology. Ther Clin Risk Manag 2023; 19:599-609. [PMID: 37484696 PMCID: PMC10361284 DOI: 10.2147/tcrm.s416918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To evaluate the accuracy of mixed reality (MR)-guided visualization technology for spinal puncture (MRsp). Methods MRsp involved the following three steps: 1. Lumbar spine computed tomography (CT) data were obtained to reconstruct virtual 3D images, which were imported into a HoloLens (2nd gen). 2. The patented MR system quickly recognized the spatial orientation and superimposed the virtual image over the real spine in the HoloLens. 3. The operator performed the spinal puncture with structural information provided by the virtual image. A posture fixation cushion was used to keep the subjects' lateral decubitus position consistent. 12 subjects were recruited to verify the setup error and the registration error. The setup error was calculated using the first two CT scans and measuring the displacement of two location markers. The projection points of the upper edge of the L3 spinous process (L3↑), the lower edge of the L3 spinous process (L3↓), and the lower edge of the L4 spinous process (L4↓) in the virtual image were positioned and marked on the skin as the registration markers. A third CT scan was performed to determine the registration error by measuring the displacement between the three registration markers and the corresponding real spinous process edges. Results The setup errors in the position of the cranial location marker between CT scans along the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) axes of the CT bed measured 0.09 ± 0.06 cm, 0.30 ± 0.28 cm, and 0.22 ± 0.12 cm, respectively, while those of the position of the caudal location marker measured 0.08 ± 0.06 cm, 0.29 ± 0.18 cm, and 0.18 ± 0.10 cm, respectively. The registration errors between the three registration markers and the subject's real L3↑, L3↓, and L4↓ were 0.11 ± 0.09 cm, 0.15 ± 0.13 cm, and 0.13 ± 0.10 cm, respectively, in the SI direction. Conclusion This MR-guided visualization technology for spinal puncture can accurately and quickly superimpose the reconstructed 3D CT images over a real human spine.
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Lei Gao
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Qiao Shi
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital of China, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China
| | - Chunhui Qin
- Department of Pain Management, Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Kai Xu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Ming Li
- Department of Radiology, Huadong Hospital affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Jianjian Qiu
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
9
|
Innovation, disruptive Technologien und Transformation in der Gefäßchirurgie. GEFÄSSCHIRURGIE 2022. [DOI: 10.1007/s00772-022-00943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Hatzl J, Böckler D, Meisenbacher K, Barb A, Hartmann N, Henning D, Uhl C. Mixed Reality in der Gefäßchirurgie – ein Scoping Review. Zentralbl Chir 2022; 147:439-446. [DOI: 10.1055/a-1939-7686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zusammenfassung
Hintergrund „Mixed Reality“ (MR) erlaubt die Projektion von virtuellen Objekten in das Sichtfeld des Anwenders durch ein Head-mounted Display (HMD). Im gefäßchirurgischen
Behandlungsspektrum könnten MR-Anwendungen in Zukunft einen Nutzen darstellen. Im folgenden Scoping Review soll eine Orientierung über die aktuelle Anwendung der genannten Technologien im
Bereich der Gefäßchirurgie gegeben und Forschungsziele für die Zukunft definiert werden. Material und Methoden Es erfolgte eine systematische Literaturrecherche in PubMed (MEDLINE)
mit den Suchbegriffen „aorta“, „intervention“, „endovsacular intervention“, „vascular surgery“, „aneurysm“, „endovascular“, „vascular access“ jeweils in Kombination mit „mixed reality“ oder
„augmented reality“. Die Suche erfolgte nach PRISMA-Leitlinie (Preferred Reporting Items for Systematic reviews and Meta-Analyses) für Scoping Reviews. Ergebnisse Aus 547
Literaturstellen konnten 8 relevante Studien identifiziert werden. Die Suchergebnisse konnten in 2 Anwendungskategorien eingeteilt werden: (1) MR mit dem Ziel des Informationsmanagements und
zur Verbesserung der periprozeduralen Ergonomie gefäßchirurgischer Eingriffe (n = 3) sowie (2) MR mit dem Ziel der intraoperativen Navigation bei gefäßchirurgischen Eingriffen (n = 5). Die
Registrierung des physischen Patienten mit dem virtuellen Objekt und das Tracking von Instrumenten in der MR-Umgebung zur intraoperativen Navigation ist dabei im Fokus des wissenschaftlichen
Interesses und konnte technisch erfolgreich am Phantom- und Tiermodell gezeigt werden. Die bisher vorgestellten Methoden sind jedoch mit hohem infrastrukturellem Aufwand und relevanten
Limitationen verbunden. Schlussfolgerung Der Einsatz von MR im Bereich der Gefäßchirurgie ist grundsätzlich vielversprechend. Für die Zukunft sollten alternative, pragmatische
Registrierungsmethoden mit entsprechender Quantifizierung des Positionierungsfehlers angestrebt werden. Die entwickelten Soft- und Hardwarelösungen sollten auf das Anforderungsprofil der
Gefäßchirurgie angepasst werden. Das elektromagnetische Instrumenten-Tracking erscheint als sinnvolle, komplementäre Technologie zur Umsetzung der MR-assistierten Navigation.
Collapse
Affiliation(s)
- Johannes Hatzl
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Dittmar Böckler
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Katrin Meisenbacher
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Alexandru Barb
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Niklas Hartmann
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Daniel Henning
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| | - Christian Uhl
- Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, UniversitätsKlinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
11
|
Moreta-Martínez R, Rubio-Pérez I, García-Sevilla M, García-Elcano L, Pascau J. Evaluation of optical tracking and augmented reality for needle navigation in sacral nerve stimulation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:106991. [PMID: 35810510 DOI: 10.1016/j.cmpb.2022.106991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Sacral nerve stimulation (SNS) is a minimally invasive procedure where an electrode lead is implanted through the sacral foramina to stimulate the nerve modulating colonic and urinary functions. One of the most crucial steps in SNS procedures is the placement of the tined lead close to the sacral nerve. However, needle insertion is very challenging for surgeons. Several x-ray projections are required to interpret the needle position correctly. In many cases, multiple punctures are needed, causing an increase in surgical time and patient's discomfort and pain. In this work we propose and evaluate two different navigation systems to guide electrode placement in SNS surgeries designed to reduce surgical time, minimize patient discomfort and improve surgical outcomes. METHODS We developed, for the first alternative, an open-source navigation software to guide electrode placement by real-time needle tracking with an optical tracking system (OTS). In the second method, we present a smartphone-based AR application that displays virtual guidance elements directly on the affected area, using a 3D printed reference marker placed on the patient. This guidance facilitates needle insertion with a predefined trajectory. Both techniques were evaluated to determine which one obtained better results than the current surgical procedure. To compare the proposals with the clinical method, we developed an x-ray software tool that calculates a digitally reconstructed radiograph, simulating the fluoroscopy acquisitions during the procedure. Twelve physicians (inexperienced and experienced users) performed needle insertions through several specific targets to evaluate the alternative SNS guidance methods on a realistic patient-based phantom. RESULTS With each navigation solution, we observed that users took less average time to complete each insertion (36.83 s and 44.43 s for the OTS and AR methods, respectively) and needed fewer average punctures to reach the target (1.23 and 1.96 for the OTS and AR methods respectively) than following the standard clinical method (189.28 s and 3.65 punctures). CONCLUSIONS To conclude, we have shown two navigation alternatives that could improve surgical outcome by significantly reducing needle insertions, surgical time and patient's pain in SNS procedures. We believe that these solutions are feasible to train surgeons and even replace current SNS clinical procedures.
Collapse
Affiliation(s)
- Rafael Moreta-Martínez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28007, Spain
| | - Inés Rubio-Pérez
- Servicio de Cirugía General, Hospital Universitario La Paz, Madrid 28046, Spain
| | - Mónica García-Sevilla
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28007, Spain
| | - Laura García-Elcano
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911, Spain; Centro de Investigación Médica Aplicada, Clínica Universidad de Navarra, Madrid 28027, Spain
| | - Javier Pascau
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28007, Spain.
| |
Collapse
|
12
|
Doughty M, Ghugre NR, Wright GA. Augmenting Performance: A Systematic Review of Optical See-Through Head-Mounted Displays in Surgery. J Imaging 2022; 8:jimaging8070203. [PMID: 35877647 PMCID: PMC9318659 DOI: 10.3390/jimaging8070203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
We conducted a systematic review of recent literature to understand the current challenges in the use of optical see-through head-mounted displays (OST-HMDs) for augmented reality (AR) assisted surgery. Using Google Scholar, 57 relevant articles from 1 January 2021 through 18 March 2022 were identified. Selected articles were then categorized based on a taxonomy that described the required components of an effective AR-based navigation system: data, processing, overlay, view, and validation. Our findings indicated a focus on orthopedic (n=20) and maxillofacial surgeries (n=8). For preoperative input data, computed tomography (CT) (n=34), and surface rendered models (n=39) were most commonly used to represent image information. Virtual content was commonly directly superimposed with the target site (n=47); this was achieved by surface tracking of fiducials (n=30), external tracking (n=16), or manual placement (n=11). Microsoft HoloLens devices (n=24 in 2021, n=7 in 2022) were the most frequently used OST-HMDs; gestures and/or voice (n=32) served as the preferred interaction paradigm. Though promising system accuracy in the order of 2–5 mm has been demonstrated in phantom models, several human factors and technical challenges—perception, ease of use, context, interaction, and occlusion—remain to be addressed prior to widespread adoption of OST-HMD led surgical navigation.
Collapse
Affiliation(s)
- Mitchell Doughty
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (N.R.G.); (G.A.W.)
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Correspondence:
| | - Nilesh R. Ghugre
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (N.R.G.); (G.A.W.)
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Graham A. Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (N.R.G.); (G.A.W.)
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| |
Collapse
|