1
|
Sebatana R, Kudzai KD, Magura A, Mdlophane A, Zeevaart JR, Sathekge M, Kahts M, Mdanda S, Witika BA. An Insight to Nanoliposomes as Smart Radiopharmaceutical Delivery Tools for Imaging Atherosclerotic Plaques: Positron Emission Tomography Applications. Pharmaceutics 2025; 17:240. [PMID: 40006607 PMCID: PMC11858949 DOI: 10.3390/pharmaceutics17020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis is a chronic progressive disease which is known to cause acute cardiovascular events as well as cerebrovascular events with high mortality. Unlike many other diseases, atherosclerosis is often diagnosed only after an acute or fatal event. At present, the clinical problems of atherosclerosis mainly involve the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase. In recent years, the development of nanotechnology has come with various advantages including non-invasive imaging enhancement, which can be studied for the imaging of atherosclerosis. For targeted imaging and atherosclerosis treatment, nanoliposomes provide enhanced stability, drug administration, extended circulation, and less toxicity. This review discusses the current advances in the development of tailored liposomal nano-radiopharmaceutical-based techniques and their applications to atherosclerotic plaque diagnosis. This review further highlights liposomal nano-radiopharmaceutical localisation and biodistribution-key processes in the pathophysiology of atherosclerosis. Finally, this review discusses the direction and future of liposomal nano-radiopharmaceuticals as a potential clinical tool for the assessment and diagnosis of atherosclerotic plaque.
Collapse
Affiliation(s)
- Reabetswe Sebatana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
| | - Kahwenga D. Kudzai
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Allan Magura
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Amanda Mdlophane
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa) SOC Ltd., Pelindaba 0240, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Maryke Kahts
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| | - Sipho Mdanda
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa; (A.M.); (M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (R.S.); (K.D.K.); (A.M.); (M.K.)
| |
Collapse
|
2
|
Currie G, Kiat H. Beyond the Lumen: Molecular Imaging to Unmask Vulnerable Coronary Plaques. J Cardiovasc Dev Dis 2025; 12:51. [PMID: 39997485 PMCID: PMC11856627 DOI: 10.3390/jcdd12020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Vulnerable coronary atherosclerotic plaque involves a dynamic pathophysiologic process within and surrounding an atheromatous plaque in coronary artery intima. The process drastically increases the risk of plaque rupture and is clinically responsible for most cases of acute coronary syndromes, myocardial infarctions, and sudden cardiac deaths. Early detection of vulnerable plaque is crucial for clinicians to implement appropriate risk-mitigation treatment strategies, offer timely interventions, and prevent potentially life-threatening events. There is an imperative clinical need to develop practical diagnostic pathways that utilize non-invasive means to risk-stratify symptomatic patients. Since the early 1990s, the identification of vulnerable plaque in clinical practice has primarily relied on invasive imaging techniques. In the last two decades, CT coronary angiogram (CTCA) has rapidly evolved into the prevalent non-invasive diagnostic modality for assessing coronary anatomy. There are now validated plaque appearances on CTCA correlating with plaque vulnerability. It is worth noting that in clinical practice, most CTCA reports omit mention of vulnerable plaque details because spatial resolution (0.3-0.5 mm) is often insufficient to reliably detect some crucial features of vulnerable plaques, such as thin fibrous caps. Additionally, accurately identifying vulnerable plaque features requires substantial expertise and time, which many cardiologists or radiologists may lack in routine reporting. Cardiac magnetic resonance imaging (cMRI) is also non-invasive and allows simultaneous anatomic and functional assessment of coronary plaques. Despite several decades of research and development, routine clinical application of cMRI in coronary plaque imaging remains hampered by complex imaging protocols, inconsistent image quality, and cost. Molecular imaging with radiotracers, specifically positron emission tomography (PET) with sodium fluoride (Na18F PET), have demonstrated significant potential as a sensitive and specific imaging procedure for diagnosing vulnerable coronary artery plaque. The study protocol is robust and brief, requiring minimal patient preparation. Compared to CTCA and cMRI, the diagnostic accuracy of this test is less dependent on the experience and expertise of the readers. Furthermore, validated automated quantitative algorithms complement the visual interpretation of the study, enhancing confidence in the diagnosis. This combination of factors makes Na18F PET a promising tool in cardiology for identifying high-risk coronary plaques.
Collapse
Affiliation(s)
- Geoffrey Currie
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Hosen Kiat
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Guimarães J, de Almeida J, Mendes PL, Ferreira MJ, Gonçalves L. Advancements in non-invasive imaging of atherosclerosis: Future perspectives. J Clin Lipidol 2024; 18:e142-e152. [PMID: 38142178 DOI: 10.1016/j.jacl.2023.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the buildup of plaques in arterial walls, leading to cardiovascular diseases and high morbidity and mortality rates worldwide. Non-invasive imaging techniques play a crucial role in evaluating patients with suspected or established atherosclerosis. However, there is a growing body of evidence suggesting the need to visualize the underlying processes of plaque progression and rupture to enhance risk stratification. This review explores recent advancements in non-invasive assessment of atherosclerosis, focusing on computed tomography, magnetic resonance imaging, and nuclear imaging. These advancements provide valuable insights into the assessment and management of atherosclerosis, potentially leading to better risk stratification and improved patient outcomes.
Collapse
Affiliation(s)
- Joana Guimarães
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal.
| | - José de Almeida
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Paulo Lázaro Mendes
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Maria João Ferreira
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Ryu J, Han SA, Han S, Choi S, Moon DH, Oh M. Comparison of SUV A/V and SUV A-V for Evaluating Atherosclerotic Inflammation in 18F-FDG PET/CT. Nucl Med Mol Imaging 2024; 58:25-31. [PMID: 38261882 PMCID: PMC10796899 DOI: 10.1007/s13139-023-00822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose This study aimed to compare the clinical significance of two parameters, division of standardized uptake value (SUV) of target arterial activity by background venous blood pool activity (SUVA/V) and subtraction of background venous blood pool activity from SUV of target arterial activity (SUVA-V) of carotid arteries with atherosclerotic plaques using 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT). Methods Patients aged 50 years or more who were diagnosed with carotid artery stenosis of 50% or more with carotid Doppler ultrasonography and had torso 18F-FDG PET/CT were enrolled retrospectively and classified patients who developed cerebrovascular events (CVEs) within 5 years after 18F-FDG PET/CT scan as the active group and patients who did not experience the CVE within 5 years as an inactive group. We calculated SUVA/V and SUVA-V using measurements of SUVmax of carotid arteries and mean SUV of superior vena cava (SVC). Results SUVA-V, SUVA-V_high, and SUVA-V_low were significantly higher in the active group than in the inactive group, but neither SUVA/V, SUVA/V_high, nor SUVA/V_low showed significant differences between the active and inactive groups. The difference in rank between groups of SUVA/V_high and SUVA/V_low was greater than the difference in rank between groups of SUVA-V_high and SUVA-V_low. The CVE incidence differed between SUVA/V_high and SUVA/V_low of high carotid FDG uptake, but the CVE incidence did not differ between SUVA-V_high and SUVA-V_low of high carotid FDG uptake. Conclusion SUVA-V may be a more rational solution than SUVA/V for evaluating atherosclerotic plaque inflammation on 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Jeongryul Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Shin Ae Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Sangwon Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Sunju Choi
- Department of Nuclear Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
5
|
Xing Z, Du M, Zhen Y, Chen J, Li D, Liu R, Zheng J. LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis: A protective mechanism in the pathogenesis of atherosclerosis. Cell Signal 2023; 112:110907. [PMID: 37769890 DOI: 10.1016/j.cellsig.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Atherosclerosis (AS), a metabolic disorder, is usually caused by chronic inflammation. LETM1 Domain-Containing Protein 1 (LETMD1) is a mitochondrial outer membrane protein required for mitochondrial structure. This study aims to evaluate the functional role of LETMD1 in endothelial pathogenesis of AS. Oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) and high-fat diet apolipoprotein E-deficient (ApoE-/-) mice were used to establish in vitro and in vivo models, respectively. Recombinant adenovirus vectors were constructed to investigate the role of LETMD1 in AS. mRNA sequencing was used to explore the effect of LETMD1 overexpression on gene expression in ox-LDL-induced HUVECs. A dual-luciferase reporting assay and chromatin immunoprecipitation (ChIP)-PCR were further conducted to verify the relationship between KLF4 and LETMD1. Results showed that LETMD1 was highly expressed in the aortas of atherosclerotic animals. LETMD1 overexpression reduced the expression of inflammatory factors, pyroptosis, ROS production, and NF-κB activation in ox-LDL-induced HUVECs, whereas LETMD1 knockdown had the opposite impact. LETMD1 overexpression was involved in regulating gene expression in ox-LDL-induced HUVECs. Overexpression of LETMD1 in mice reduced serum lipid levels as well as atherosclerotic lesions in the aortic roots. Furthermore, LETMD1 overexpression suppressed inflammatory reactions, cell pyroptosis, nuclear p65 protein level, cell apoptosis, and ROS generation in the aortas of AS mice. KLF4 (Krüppel-like factor 4) was found to be the transcriptional regulator of LETMD1. In conclusion, LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis, which is a mechanism inhibiting the development of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Dongdong Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Ruyin Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China..
| |
Collapse
|