1
|
Zhang M, Yang J, Kang Z, Wu X, Tang L, Qiang Z, Zhang D, Pan X. Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124095. [PMID: 33049633 DOI: 10.1016/j.jhazmat.2020.124095] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) contamination in water has garnered significantly global concerns. The MP removal particularly challenges when the particle size decreases to several microns and other contaminants co-exist. This study used the coagulative colloidal gas aphrons (CCGAs) to simultaneously remove the micron-scale MP particles (~5 µm in diameter) and dissolved organic matter (DOM). Carboxyl-modified poly-(methyl methacrylate) (PMMA) and unsurface-coated polystyrene (PS) were chosen as target MPs. Over 94% of PS particles and almost 100% of color were simultaneously removed with lower CCGA consumption than the scenarios with either contaminant in water. The PMMA removal was not as high as the PS removal since the HA polyanions could compete with the negatively-charged PMMA for CCGAs. High salinity reduced the removal of HA by changing its interfacial behaviors without impacting the MP separation. In river water or influent of wastewater treatment plant, the MP particles were almost completely eliminated whereas the DOM (tyrosine-like or tryptophan-like) was partially removed. The fluorescence quenching titration revealed that CCGAs preferably captured the free DOM and the DOM-coated MP particles through complexation interaction. The study denoted that the CCGA system could be a robust tool for efficiently and synergistically removing micron-scale MPs and DOM from different water matrixes.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Kang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyou Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linfeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Effects of Salinity on Bubble Cloud Characteristics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2017. [DOI: 10.3390/jmse6010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|