1
|
García-Corona JL, Hegaret H, Lassudrie M, Derrien A, Terre-Terrillon A, Delaire T, Fabioux C. Comparative study of domoic acid accumulation, isomer content and associated digestive subcellular processes in five marine invertebrate species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106793. [PMID: 38071899 DOI: 10.1016/j.aquatox.2023.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Despite the deleterious effects of the phycotoxin domoic acid (DA) on human health, and the permanent threat of blooms of the toxic Pseudo-nitzschia sp. over commercially important fishery-resources, knowledge regarding the physiological mechanisms behind the profound differences in accumulation and depuration of this toxin in contaminated invertebrates remain very scarce. In this work, a comparative analysis of accumulation, isomer content, and subcellular localization of DA in different invertebrate species was performed. Samples of scallops Pecten maximus and Aequipecten opercularis, clams Donax trunculus, slippersnails Crepidula fornicata, and seasquirts Asterocarpa sp. were collected after blooms of the same concentration of toxic Pseudo-nitzschia australis. Differences (P < 0.05) in DA accumulation were found, wherein P. maximus showed up to 20-fold more DA in the digestive gland than the other species. Similar profiles of DA isomers were found between P. maximus and A. opercularis, whereas C. fornicata was the species with the highest biotransformation rate (∼10 %) and D. trunculus the lowest (∼4 %). DA localization by immunohistochemical analysis revealed differences (P < 0.05) between species: in P. maximus, DA was detected mainly within autophagosome-like vesicles in the cytoplasm of digestive cells, while in A. opercularis and C. fornicata significant DA immunoreactivity was found in post-autophagy residual bodies. A slight DA staining was found free within the cytoplasm of the digestive cells of D. trunculus and Asterocarpa sp. The Principal Component Analysis revealed similarities between pectinids, and a clear distinction of the rest of the species based on their capabilities to accumulate, biotransform, and distribute the toxin within their tissues. These findings contribute to improve the understanding of the inter-specific differences concerning the contamination-decontamination kinetics and the fate of DA in invertebrate species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Hélène Hegaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Malwenn Lassudrie
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Amélie Derrien
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Aouregan Terre-Terrillon
- Ifremer, LITTORAL LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, Cedex, Concarneau 29900, France
| | - Tomé Delaire
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Technopôle Brest-Iroise, Plouzané 29280, France.
| |
Collapse
|
2
|
Dong C, Wu H, Zheng G, Peng J, Guo M, Tan Z. Transcriptome Analysis Reveals MAPK/AMPK as a Key Regulator of the Inflammatory Response in PST Detoxification in Mytilus galloprovincialis and Argopecten irradians. Toxins (Basel) 2022; 14:toxins14080516. [PMID: 36006178 PMCID: PMC9416634 DOI: 10.3390/toxins14080516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are an increasingly important source of pollution. Bivalves, as the main transmission medium, accumulate and metabolize PSTs while protecting themselves from damage. At present, the resistance mechanism of bivalves to PSTs is unclear. In this study, Mytilus galloprovincialis and Argopecten irradians were used as experimental shellfish species for in situ monitoring. We compared the inflammatory-related gene responses of the two shellfish during PSTs exposure by using transcriptomes. The results showed that the accumulation and metabolism rate of PSTs in M. galloprovincialis was five-fold higher than that in A. irradians. The inflammatory balance mechanism of M. galloprovincialis involved the co-regulation of the MAPK-based and AMPK-based anti-inflammatory pathways. A. irradians bore a higher risk of death because it did not have the balance system, and the regulation of apoptosis-related pathways such as the PI3K-AKT signaling pathway were upregulated. Taken together, the regulation of the inflammatory balance coincides with the ability of bivalves to cope with PSTs. Inflammation is an important factor that affects the metabolic pattern of PSTs in bivalves. This study provides new evidence to support the studies on the resistance mechanism of bivalves to PSTs.
Collapse
Affiliation(s)
- Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-532-8583-6348; Fax: +86-532-8582-5917
| |
Collapse
|
3
|
Transcriptome and Network Analyses Reveal the Gene Set Involved in PST Accumulation and Responses to Toxic Alexandrium minutum Exposure in the Gills of Chlamys farreri. Int J Mol Sci 2022; 23:ijms23147912. [PMID: 35887262 PMCID: PMC9324277 DOI: 10.3390/ijms23147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Bivalve molluscs are filter-feeding organisms that can accumulate paralytic shellfish toxins (PST) through ingesting toxic marine dinoflagellates. While the effects of PST accumulation upon the physiology of bivalves have been documented, the underlying molecular mechanism remains poorly understood. In this study, transcriptomic analysis was performed in the gills of Zhikong scallop (Chlamys farreri) after 1, 3, 5, 10, and 15 day(s) exposure of PST-producing dinoflagellate Alexandrium minutum. Higher numbers of differentially expressed genes (DEGs) were detected at day 1 (1538) and day 15 (989) than that at day 3 (77), day 5 (82), and day 10 (80) after exposure, and most of the DEGs were only regulated at day 1 or day 15, highlighting different response mechanisms of scallop to PST-producing dinoflagellate at different stages of exposure. Functional enrichment results suggested that PST exposure induced the alterations of nervous system development processes and the activation of xenobiotic metabolism and substance transport processes at the acute and chronic stages of exposure, respectively, while the immune functions were inhibited by PST and might ultimately cause the activation of apoptosis. Furthermore, a weighted gene co-expression network was constructed, and ten responsive modules for toxic algae exposure were identified, among which the yellow module was found to be significantly correlated with PST content. Most of the hub genes in the yellow module were annotated as solute carriers (SLCs) with eight being OCTN1s, implying their dominant roles in regulating PST accumulation in scallop gills. Overall, our results reveal the gene set responding to and involved in PST accumulation in scallop gills, which will deepen our understanding of the molecular mechanism of bivalve resistance to PST.
Collapse
|
4
|
Li Q, Zhang F, Sun S. The survival and responses of blue mussel Mytilus edulis to 16-day sustained hypoxia stress. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105601. [PMID: 35306403 DOI: 10.1016/j.marenvres.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The blue mussel Mytilus edulis, which is a worldwide commercial species distributed mainly from the intertidal zone to tens of meters deep, has been previously studied regarding its acute defense responses to air exposure and intermittent hypoxia. However, the effects of sustained hypoxia, such as caused by coastal eutrophication, remain to be explored. In the present study, the critical threshold of dissolved oxygen (DO) for experimental mussels exposed to 16 days of hypoxia was DO 0.7-0.8 mg L-1, below which survival dropped drastically from nearly 80% to <38%. When hypoxia was combined with DO fluctuations or with poor water quality, the threshold rose to an average of DO 1.0 mg L-1, which resulted in less than 80% survival. To find possible clues of physiological stress to account for mortalities, the metabolic rate and enzyme activities of Na+/K+ ATPase, superoxide dismutase, acid phosphatase, and alkaline phosphatase were further recorded.
Collapse
Affiliation(s)
- Qiao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Fang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Mi R, Li X, Sun Y, Wang Q, Tian B, Ma S, Meng N, Li Y, Wen Z, Li S, Wang X, Du X. Effects of microbial community and disease resistance against Vibrio splendidus of Yesso scallop (Patinopecten yessoensis) fed supplementary diets of tussah immunoreactive substances and antimicrobial peptides. FISH & SHELLFISH IMMUNOLOGY 2022; 121:446-455. [PMID: 34655739 DOI: 10.1016/j.fsi.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate the effects of dietary supplementation of tussah immunoreactive substances (TIS) and antimicrobial peptides (AMPs) on microbial community and resistance against Vibrio splendidus of Yesso scallop Patinopecten yessoensis. Scallops were fed with the basal diets supplemented with TIS (T group), AMPs (A group), or both of the two (TA group). After the feeding trial, the microbial community changes were evaluated, and the challenge test with V. splendidus was conducted, as well as the immune parameters and digestive enzyme activities were determined. The results revealed that the TA group was more capable of modulating the bacterial community composition of scallops by increasing the potentially beneficial bacteria and suppressing the pathogenic microorganism during the feeding trial. After injection, the cumulative mortality rate in TA group was notably lower than others. In addition, the TA group showed better digestive and immune parameters involved in digestive capacity, phagocyte function, phosphatase-responsiveness, and oxidation resistance. These results collectively confirmed that dietary TIS and AMPs in diet could effectively modulate the microflora structure and improve disease resistance against V. splendidus of scallop, and the positive effects were more obvious when dietary supplementation of them in combination.
Collapse
Affiliation(s)
- Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Xuejun Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Yongxin Sun
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Qingzhi Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Bin Tian
- Dalian Modern Agriculture Production Development Service Center, Dalian, 116024, PR China
| | - Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Nan Meng
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Yajie Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Zhixin Wen
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Shuying Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Xiaoyan Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China
| | - Xingfan Du
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024, PR China.
| |
Collapse
|
6
|
Ventoso P, Pazos AJ, Blanco J, Pérez-Parallé ML, Triviño JC, Sánchez JL. Transcriptional Response in the Digestive Gland of the King Scallop ( Pecten maximus) After the Injection of Domoic Acid. Toxins (Basel) 2021; 13:toxins13050339. [PMID: 34067146 PMCID: PMC8150855 DOI: 10.3390/toxins13050339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.
Collapse
Affiliation(s)
- Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Antonio J. Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
- Correspondence:
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo. 13, 36620 Vilanova de Arousa, Spain;
| | - M. Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Juan C. Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, 46980 Valencia, Spain;
| | - José L. Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| |
Collapse
|