1
|
Loeffler CR, Spielmeyer A. Faster ciguatoxin extraction methods for toxicity screening. Sci Rep 2024; 14:21715. [PMID: 39289443 PMCID: PMC11408646 DOI: 10.1038/s41598-024-72708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Ciguatera poisoning (CP) is a severe global public health problem caused by the consumption of seafood products contaminated with ciguatoxins (CTXs). The growing demand for seafood products requires high-throughput testing for CTX-susceptible seafood, however complex extraction and slow cleanup methods inhibit this goal. Herein, several methods for extracting CTXs from fish tissue were established and compared; these methods are sensitive, specific, and valid while achieving higher sample extraction throughput than currently established protocols. The trial fish material was generated from multiple species, with different physical conditions (wet and freeze-dried tissue), and naturally contaminated with various CTXs (i.e., CTX-1B, CTX-3C, and C-CTX-1), thus ensuring these methods are robust and broadly applicable. The extraction methods used were based on mechanical maceration with acetone or methanol or enzymatic digestion followed by acetone and ethyl acetate extraction. Crude extracts were investigated for CTX-like toxicity using an in vitro mouse neuroblastoma (N2a) cell-based assay (CBA). Among the three methods, there was no significant difference in toxin estimates (p = 0.219, two-way ANOVA), indicating their interchangeability. For speed (> 16 samples/day), accuracy (100%), and CTX analog retention confirmation by liquid chromatography-tandem mass spectrometry (LC‒MS/MS), the preferred extraction methods were both methanol and enzyme-based. All extraction methods post hoc confirmation of CTX analogs successfully met international seafood market-based CTX contaminant guidance. These methods can drastically increase global CTX screening capabilities and subsequently relieve sample processing bottlenecks, inhibiting environmental and human health-based CTX analysis.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Astrid Spielmeyer
- Department of Safety in the Food Chain, National Reference Laboratory for the Monitoring of Marine Biotoxins, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Kobayashi M, Masuda J, Oshiro N. Detection of Extremely Low Level Ciguatoxins through Monitoring of Lithium Adduct Ions by Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Toxins (Basel) 2024; 16:170. [PMID: 38668595 PMCID: PMC11053878 DOI: 10.3390/toxins16040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.
Collapse
Affiliation(s)
- Manami Kobayashi
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Junichi Masuda
- Shimadzu Corporation, 3-25-40, Tonomachi, Kawasaki-Ku, Kawasaki 210-0821, Kanagawa, Japan;
| | - Naomasa Oshiro
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki 210-9501, Kanagawa, Japan;
| |
Collapse
|
3
|
Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. HARMFUL ALGAE 2023; 129:102525. [PMID: 37951623 DOI: 10.1016/j.hal.2023.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.
Collapse
Affiliation(s)
- M Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia.
| | - C Gatti Howell
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - M Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 6570, Faa'a, Tahiti 98702, French Polynesia
| | - A Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - K Henry
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - T Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - P Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - J Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - H T Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| |
Collapse
|
4
|
Li Q, Mahmudiono T, Mohammadi H, Nematollahi A, Hoseinvandtabar S, Mehri F, Hasanzadeh V, Limam I, Fakhri Y, Thai VN. Concentration ciguatoxins in fillet of fish: A global systematic review and meta-analysis. Heliyon 2023; 9:e18500. [PMID: 37554806 PMCID: PMC10404960 DOI: 10.1016/j.heliyon.2023.e18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In the current study, an attempt was made to meta-analyze and discuss the concentration of ciguatoxins (CTXs) in fillets of fish based on country and water resources subgroups. The search was conducted in Scopus and PubMed, Embase and Web of Science to retrieve papers about the concentration of CTXs in fillet fish until July 2022. Meta-analysis concentration of CTXs was conducted based on countries and water resources subgroups in the random effects model (REM). The sort of countries based on the pooled concentration of CTXs was Kiribati (3.904 μg/kg) > Vietnam (1.880 μg/kg) > Macaronesia (1.400 μg/kg) > French (1.261 μg/kg) > China (0.674 μg/kg) > Japan (0.572 μg/kg) > USA (0.463 μg/kg) > Spain (0.224 μg/kg) > UK (0.170 μg/kg) > Fiji (0.162 μg/kg) > Mexico (0.150 μg/kg) > Australia (0.138 μg/kg) > Portugal (0.011 μg/kg). CTXs concentrations in all countries are higher than the safe limits of CTX1C (0.1 μg/kg). However, based on the safe limits of CTX1P, the concentrations of CTXs in just Portugal meet the regulation level (0.01 μg/kg). The minimum and maximum concentrations of CTXs were as observed in Selvagens Islands (0.011 μg/kg) and St Barthelemy (7.875 μg/kg) respectively. CTXs concentrations in all water resources are higher than safe limits of CTX1C (0.1 μg/kg) and CTX1B (0.01 μg/kg). Therefore, it is recommended to carry out continuous control pans of CTXs concentration in fish in different countries and water sources.
Collapse
Affiliation(s)
- Qingxiao Li
- College of Grain Engineering, Henan Industry and Trade Vocational College, Zhengzhou,451191, Henan Province, China
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vajihe Hasanzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Holmes MJ, Lewis RJ. Model of the Origin of a Ciguatoxic Grouper ( Plectropomus leopardus). Toxins (Basel) 2023; 15:toxins15030230. [PMID: 36977121 PMCID: PMC10055633 DOI: 10.3390/toxins15030230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.
Collapse
Affiliation(s)
- Michael J Holmes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
6
|
Tomikawa T, Kuniyoshi K, Ito S, Sakugawa S, Ishikawa A, Saito T, Kojima T, Asakura H, Ikehara T, Oshiro N. Analysis of Ciguatoxins in the Spotted Knifejaw, <i>Oplegnathus punctatus</i> from the Waters of Japan. FOOD HYGIENE AND SAFETY SCIENCE (SHOKUHIN EISEIGAKU ZASSHI) 2022; 63:190-194. [DOI: 10.3358/shokueishi.63.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shiori Ito
- Fuculty of Life & Environmental Sciences, Teikyo University of Science
| | | | | | - Toshio Saito
- School of Marine Science and Technology, Tokai University
| | - Takashi Kojima
- Fuculty of Life & Environmental Sciences, Teikyo University of Science
| | | | - Tsuyoshi Ikehara
- Course of Resource Management and Food Science, Graduate School of Fisheries Science, National Fisheries University
| | | |
Collapse
|
7
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
8
|
Loeffler CR, Abraham A, Stopa JE, Flores Quintana HA, Jester ELE, La Pinta J, Deeds J, Benner RA, Adolf J. Ciguatoxin in Hawai'i: Fisheries forecasting using geospatial and environmental analyses for the invasive Cephalopholis argus (Epinephelidae). ENVIRONMENTAL RESEARCH 2022; 207:112164. [PMID: 34627798 DOI: 10.1016/j.envres.2021.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Invasive species can precede far-reaching environmental and economic consequences. In the Hawai'ian Archipelago Cephalopholis argus (family Serranidae) is an established invasive species, now recognized as the dominant local reef predator, negatively impacting the native ecosystem and local fishery. In this region, no official C. argus fishery exists, due to its association with Ciguatera seafood poisoning (CP); a severe intoxication in humans occurring after eating (primarily) fish contaminated with ciguatoxins (CTXs). Pre-harvest prediction of CP is currently not possible; partly due to the ubiquitous nature of the microalgae producing CTXs and the diverse bioaccumulation pathways of the toxins. This study investigated the perceived risk of CP in two geographically discrete regions (Leeward and Windward) around the main island of Hawai'i, guided by local fishers. C. argus was collected and investigated for CTXs using the U.S. Food and Drug Administration (FDA) CTX testing protocol (in vitro neuroblastoma N2a-assay and LC-MS/MS). Overall, 76% of fish (87/113) exceeded the FDA guidance value for CTX1B (0.01 ng g-1 tissue equivalents); determined by the N2a-assay. Maximum CTX levels were ≅2× higher at the Leeward vs Windward location and, respectively, 95% (64/67) and 54% (25/46) of fish were positive for CTX-like activity. Fisher persons and environmental understandings, regarding the existence of a geographic predictor (Leeward vs Windward) for harvest, were found to be (mostly) accurate as CTXs were detected in both locations and the local designation of C. argus as a risk for CP was confirmed. This study provides additional evidence that supports the previous conclusions that this species is a severe CP risk in the coastal food web of Hawai'i, and that ocean exposure (wave power) may be a prominent factor influencing the CTX content in fish within a hyperendemic region for CP.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA.
| | - Ann Abraham
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Justin E Stopa
- Department of Ocean and Resources Engineering, University of Hawaii Mānoa, Honolulu, HI, 96822, USA
| | - Harold A Flores Quintana
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Edward L E Jester
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Joshua La Pinta
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| | - Jonathan Deeds
- Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Ronald A Benner
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Jason Adolf
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| |
Collapse
|
9
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
10
|
An Extensive Survey of Ciguatoxins on Grouper Variola louti from the Ryukyu Islands, Japan, Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ingesting fish contaminated with ciguatoxins (CTXs) originating from epibenthic dinoflagellates causes ciguatera fish poisoning (CFP). CFP occurs mainly in the tropical and subtropical Indo–Pacific region and the Caribbean Sea. Furthermore, it occurs sporadically in Japan, especially in the Ryukyu Islands between Taiwan and Kyushu, Japan. Variola louti is the most frequently implicated fish with a suggested toxin profile, consisting of ciguatoxin-1B and two deoxy congeners. Therefore, using the liquid chromatography–tandem mass spectrometry (LC-MS/MS), we analyzed CTXs in the flesh of 154 individuals from various locations and detected CTXs in 99 specimens (64%). In 65 fish (43%), CTX levels exceeded the Food and Drug Administration (FDA) guidance level (0.01 µg/kg). Furthermore, in four specimens (3%), the guideline level in Japan (>0.18 µg/kg) was met. Additionally, although the highest total CTX level was 0.376 µg/kg, the consumption of 180 g of this specimen was assumed to cause CFP. Moreover, only CTX1B, 52-epi-54-deoxyCTX1B, and 54-deoxyCTX1B were detected, with the relative contribution of the three CTX1B analogs to the total toxin content (35 ± 7.7 (SD)%, 27 ± 8.1%, and 38 ± 5.6%, respectively) being similar to those reported in this region in a decade ago. Subsequently, the consistency of the toxin profile in V. louti was confirmed using many specimens from a wide area. As observed, total CTX levels were correlated with fish sizes, including standard length (r = 0.503, p = 3.08 × 10−11), body weight (r = 0.503, p = 3.01 × 10−11), and estimated age (r = 0.439, p = 3.81 × 10−7) of the specimens. Besides, although no correlation was observed between condition factor (CF) and total CTX levels, a significance difference was observed (p = 0.039) between the groups of skinnier and fattier fish, separated by the median CF (3.04). Results also showed that the CF of four specimens with the highest CTX level (>0.18 µg/kg) ranged between 2.49 and 2.87, and they were skinnier than the average (3.03) and median of all specimens.
Collapse
|
11
|
Raposo-Garcia S, Louzao MC, Fuwa H, Sasaki M, Vale C, Botana LM. Determination of the toxicity equivalency factors for ciguatoxins using human sodium channels. Food Chem Toxicol 2022; 160:112812. [PMID: 35026329 DOI: 10.1016/j.fct.2022.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Ciguatoxins (CTXs) which are produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa and share a ladder-shaped polyether structure, are causative compounds of one of the most frequent foodborne illness disease known as ciguatera fish poisoning (CFP). CFP was initially found in tropical and subtropical areas but nowadays the dinoflagellates producers of ciguatoxins had spread to European coasts. Therefore, this raises the need of establishing toxicity equivalency factors for the different compounds that can contribute to ciguatera fish poisoning, since biological methods have been replaced by analytical techniques. Thus, in this work, the effects of six compounds causative of ciguatera, on their main target, the human voltage-gated sodium channels have been analyzed for the first time. The results presented here led to the conclusion that the order of potency was CTX1B, CTX3B, CTX4A, gambierol, gambierone and MTX3. Furthermore, the data indicate that the activation voltage of sodium channels is more sensitive to detect ciguatoxins than their effect on the peak sodium current amplitude.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan.
| | - Carmen Vale
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002, Lugo, Spain.
| |
Collapse
|
12
|
Campàs M, Leonardo S, Oshiro N, Kuniyoshi K, Tsumuraya T, Hirama M, Diogène J. A smartphone-controlled amperometric immunosensor for the detection of Pacific ciguatoxins in fish. Food Chem 2021; 374:131687. [PMID: 34891085 DOI: 10.1016/j.foodchem.2021.131687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Ciguatoxins (CTXs) are marine neurotoxins produced by microalgae of the genera Gambierdiscus and Fukuyoa. CTXs may reach humans through food webs and cause ciguatera fish poisoning (CFP). An immunosensor for the detection of Pacific CTXs in fish was developed using multiwalled carbon nanotube (MWCNT)-modified carbon electrodes and a smartphone-controlled potentiostat. The biosensor attained a limit of detection (LOD) and a limit of quantification (LOQ) of 6 and 27 pg/mL of CTX1B, respectively, which were 0.001 and 0.005 μg/kg in fish flesh. In the analysis of fish samples from Japan and Fiji, excellent correlations were found with sandwich enzyme-linked immunosorbent assays (ELISAs), a cell-based assay (CBA) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Stability of at least 3 months at -20 °C was predicted. In just over 2 h, the biosensor provides reliable, accurate and precise Pacific CTX contents in fish extracts, being suitable for monitoring and research programs.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Sandra Leonardo
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Naomasa Oshiro
- Division of Biomedical Food Research, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Kyoko Kuniyoshi
- Division of Biomedical Food Research, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
13
|
Nagasawa H, Kuniyoshi K, Tanigawa T, Kobayashi N, Sugita-Konishi Y, Asakura H, Oshiro N. [Analysis of Ciguatoxins in Variola louti Captured off the Ogasawara (Bonin) Islands]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:157-161. [PMID: 34732641 DOI: 10.3358/shokueishi.62.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ciguatera poisoning (CP) is one of the most abundant seafood poisonings in the world. CP frequently occurred in the tropical and subtropical Indo-Pacific Ocean and the Caribbean Sea. In Japan, CP cases have been reported annually, from the subtropical regions, including Okinawa Prefecture and Amami Islands, Kagoshima Prefecture. The principal toxins, named ciguatoxins (CTXs), are bio-synthesized by benthic dinoflagellate of genera Gambierdiscus and Fukuyoa. They are bio-transferred herbivorous animals to carnivorous fishes via the food chain.The Ogasawara Islands comprise more than 30 islands, Mukojima Islands, Chichijima (Bonin) Islands, Hahajima Islands, Iwo Islands, Nishinoshima, Minamitorishima, and Okinotorishima, which locate in the tropical to subtropical regions. The Mukojima Islands, Chichijima Islands, and Hahajima Islands locate approximately the same latitude as Okinawa. The distance from Tokyo is approximately 1,000 km for Chichijima, 1,700 km for Okinotorishima (the southernmost tip of Japan), and 1,900 km for Minamitorishima (the easternmost tip of Japan). These islands exist in a wide range of waters, latitudes from 20°25' to 27°44' North and longitudes from 136°04' to 153° 59' East. We collected 65 specimens of a grouper, Variola louti, the most frequent species implicated in CP in Japan, from the waters around the Chichijima, Mukojima, and Hahajima islands. The fish flesh specimens were analyzed CTXs using the liquid chromatography-tandem mass spectrometer (LC-MS/MS). While the peak whose retention time is almost identical to that of CTX1B was detected in all specimens on our routine protocol, no 52-epi-54-deoxyCTX1B nor 54-deoxyCTX1B was detected. The peak retention time was quite different from that of CTX1B when re-analyzing by changing the analytical column. Thus, the CTXs in the specimens in the waters of these islands seemed to be undetectable levels.
Collapse
Affiliation(s)
- Hiroya Nagasawa
- National Institute of Health Sciences.,Department of Food and Life Science, School of Life and Environmental Science
| | | | | | - Naoki Kobayashi
- Department of Food and Life Science, School of Life and Environmental Science
| | | | | | | |
Collapse
|
14
|
Extraction and LC-MS/MS Analysis of Ciguatoxins: A Semi-Targeted Approach Designed for Fish of Unknown Origin. Toxins (Basel) 2021; 13:toxins13090630. [PMID: 34564634 PMCID: PMC8473320 DOI: 10.3390/toxins13090630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Ciguatoxins (CTXs) are polyether marine biotoxins that can cause ciguatera poisoning (CP) after the consumption of fish or invertebrates containing sub ppb levels; concentrations that present a challenge for current extraction and analysis methods. Here, a newly developed and (partly) validated single-day extraction protocol is presented. First, the fish sample is broken-down by enzymatic digestion, followed by extraction and extract clean-up by defatting and two solid-phase extractions. Final extracts were investigated using two different CTX-analysis methods; an in vitro cytotoxicity assay (N2a-assay) and by LC-MS/MS. Validation was performed for both fillet and freeze-dried samples of snapper, parrotfish, and grouper spiked with CTX1B, 52-epi-54-deoxyCTX1B, 54-deoxyCTX1B, and CTX3C. Based on recovery rates (35–88%) and matrix effects (66–116%) determined by LC-MS/MS, the enzyme protocol is applicable to various matrices. The protocol was applied to naturally contaminated fish tissue (Lutjanus bohar) obtained during a CP incident in Germany. Several potential CTX congeners were identified by a two-tier LC-MS/MS approach (screening of sodium adducts, high-resolution or low-resolution confirmation via ammonium adducts). Inclusion of >30 known CTX congeners into the LC-MS/MS methods and single-day sample preparation make the method suitable for analysis of ciguatera suspect samples at sub ppb levels also with undisclosed CTX profiles.
Collapse
|
15
|
Oshiro N, Nagasawa H, Kuniyoshi K, Kobayashi N, Sugita-Konishi Y, Asakura H, Yasumoto T. Characteristic Distribution of Ciguatoxins in the Edible Parts of a Grouper, Variola louti. Toxins (Basel) 2021; 13:218. [PMID: 33803043 PMCID: PMC8002984 DOI: 10.3390/toxins13030218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is one of the most frequently encountered seafood poisoning syndromes; it is caused by the consumption of marine finfish contaminated with ciguatoxins (CTXs). The majority of CFP cases result from eating fish flesh, but a traditional belief exists among people that the head and viscera are more toxic and should be avoided. Unlike the viscera, scientific data to support the legendary high toxicity of the head is scarce. We prepared tissue samples from the fillet, head, and eyes taken from five yellow-edged lyretail (Variola louti) individuals sourced from Okinawa, Japan, and analyzed the CTXs by LC-MS/MS. Three CTXs, namely, CTX1B, 52-epi-54-deoxyCTX1B, and 54-deoxyCTX1B, were confirmed in similar proportions. The toxins were distributed nearly evenly in the flesh, prepared separately from the fillet and head. Within the same individual specimen, the flesh in the fillet and the flesh from the head, tested separately, had the same level and composition of toxins. We, therefore, conclude that flesh samples for LC-MS/MS analysis can be taken from any part of the body. However, the tissue surrounding the eyeball displayed CTX levels two to four times higher than those of the flesh. The present study is the first to provide scientific data demonstrating the high toxicity of the eyes.
Collapse
Affiliation(s)
- Naomasa Oshiro
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (H.N.); (K.K.); (H.A.)
| | - Hiroya Nagasawa
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (H.N.); (K.K.); (H.A.)
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (N.K.); (Y.S.-K.)
| | - Kyoko Kuniyoshi
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (H.N.); (K.K.); (H.A.)
| | - Naoki Kobayashi
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (N.K.); (Y.S.-K.)
| | - Yoshiko Sugita-Konishi
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (N.K.); (Y.S.-K.)
| | - Hiroshi Asakura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; (H.N.); (K.K.); (H.A.)
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan;
| |
Collapse
|
16
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|