1
|
Ship Path Planning Based on Buoy Offset Historical Trajectory Data. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the existing research on the intelligent navigation of ships, navigation route planning often regards light buoys as fixed obstructions. However, due to factors such as water ripples, the position of the buoys keeps periodically changing. If the buoys are set to a fixed range of avoidance areas in the process of ship navigation, it is easy to allow a collision between the ship and the light buoys. Therefore, based on historical motion trajectory data of the buoys, a SARIMA-based time-series prediction model is proposed to estimate the offset position of a given buoy in a specified time. Furthermore, the collision-free path planning approach is presented to dynamically recommend an accurate sailing path. The results of the simulation experiment show that this method can effectively deal with collisions of ships caused by the offset position of the light buoys during the navigation of the large and low-speed autonomous ships.
Collapse
|
2
|
Track Pairs Collision Detection with Applications to Ship Collision Risk Assessment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The port waterway network plays an important role in the organization and management of port ship traffic. Due to limited ship operations, conflicts, congestion, and safety issues often arise in port waters. Conflicts between ships can be predicted by collision detection between ships. A novel collision detection algorithm for trajectory pairs is proposed by introducing variable time interval variables. In addition, to improve the overall accuracy of trajectory compression and reduce redundant calculation in collision detection, a multi-factor Douglas-Peucker algorithm adapted to ship trajectory compression is proposed with the consideration of speed and turn constraints. The maximum speed difference of the algorithm is increased by 1.5–2.5%, and the average speed difference increased by 2.0–4.5%. Based on the method mentioned above, the risk assessment framework of maritime collision is established and the risk situation of the waters near Ningbo Zhoushan Port is evaluated and analyzed by using ship historical track data.
Collapse
|