1
|
Tian M, Yan B, Jiang R, Liu C, Li Y, Xu B, Guo S, Li X. Activity of polymyxin B combined with cefepime-avibactam against the biofilms of polymyxin B-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae in in vitro and in vivo models. BMC Microbiol 2024; 24:409. [PMID: 39407114 PMCID: PMC11481319 DOI: 10.1186/s12866-024-03571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial biofilms, often forming on medical devices, can lead to treatment failure due to their increased antimicrobial resistance. Cefepime-avibactam (CFP-AVI) exhibits potent activities against Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) when used with polymyxin B (PMB). However, its efficacy in biofilm-related infections is unknown. The present study aimed to evaluate the activity of PMB combined with CFP-AVI against the biofilms of PMB-resistant Gram-negative bacteria. Five K. pneumoniae strains and three P. aeruginosa strains known to be PMB-resistant and prone to biofilm formation were selected and evaluated. Antimicrobial susceptibility assays demonstrated that the minimal biofilm inhibitory and eradication concentrations of PMB and CFP-AVI for biofilms formed by the eight strains were significantly higher than the minimal inhibitory concentrations of the antibiotics for planktonic cells. The biofilm formation inhibition and eradication assays showed that PMB combined with CFP-AVI cannot only suppress the formation of biofilm but also effectively eradicate the preformed mature biofilms. In a modified in vitro pharmacokinetic/pharmacodynamic biofilm model, CFP-AVI monotherapy exhibited a bacteriostatic or effective activity against the biofilms of seven strains, whereas PMB monotherapy did not have any activity at 72 h. However, PMB combined with CFP-AVI demonstrated bactericidal activity against the biofilms of all strains at 72 h. In an in vivo Galleria mellonella infection model, the 7-day survival rates of larvae infected with biofilm implants of K. pneumoniae or P. aeruginosa were 0-6.7%, 40.0-63.3%, and 46.7-90.0%, respectively, for PMB alone, CFP-AVI alone, and PMB combined with CFP-AVI; the combination therapy increased the rate by 6.7-33.3% (P < 0.05, n = 6), compared to CFP-AVI monotherapy. It is concluded that PMB combined with CFP-AVI exhibits effective anti-biofilm activities against PMB-resistant K. pneumoniae and P. aeruginosa both in vitro and in vivo, and thus may be a promising therapeutic strategy to treat biofilm-related infections.
Collapse
Affiliation(s)
- Miaomei Tian
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Bingqian Yan
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Rong Jiang
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Candi Liu
- Hunan Drug Inspection Center, Changsha, Hunan Province, People's Republic of China
| | - You Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Siwei Guo
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Long Y, Xu J, Hu Z, Fan XY, Wang H. Antifungal activity of Cinnamaldehyde derivatives against fluconazole-resistant Candida albicans. Microb Pathog 2024; 195:106877. [PMID: 39173853 DOI: 10.1016/j.micpath.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Candida albicans is an opportunistic pathogen commonly found in human mucous membranes. In light of the escalating challenge posed by antibiotic resistance of C. albicans strains worldwide, it is an urgently necessary to explore alternative therapeutic options. OBJECTIVE This study aims to assess the efficacy of two Cinnamaldehyde derivatives, 2-Cl Cinnamaldehyde (2-Cl CA) and 4-Cl Cinnamaldehyde (4-Cl CA), against C. albicans through both in vitro experiments and in vivo murine models and to evaluate their potential as new drug candidates for treating C. albicans. METHODS AND RESULTS The minimum inhibitory concentrations (MICs) of Cinnamaldehyde 2-Cl and 4-Cl benzene ring derivatives against C. albicans were 25 μg/mL. Time-killing experiments revealed that both Cinnamaldehyde derivatives exhibited fungicidal activity against C. albicans at concentrations of 5 MIC and 10 MIC. In the checkerboard experiment, 4-Cl CA did not show any antagonistic effect when combined with first-line antifungal drugs. Instead, it exhibited additive effects in combination with nystatin. Both 2-Cl and 4-Cl CA demonstrated inhibitory activity against C. albicans biofilm formation, especially at 8 MIC and 16 MIC concentrations. In C. albicans biofilm eradication experiments, although high drug concentrations of 2-Cl and 4-Cl CA were unable to eradicate the biofilm completely, they were still effective in killing C. albicans cells within the biofilm. Moreover, sub-inhibitory concentrations of 4-Cl CA (ranging from 5 to 20 μg/mL) significantly inhibited cell aggregation and hyphal formation. Furthermore, 4-Cl CA effectively inhibited intracellular C. albicans infection in macrophages. Lastly, the effectiveness of 4-Cl CA was evaluated in a mouse model of hematogenous disseminated candidiasis caused by C. albicans, which revealed that 4-Cl CA significantly reduced fungal burden and improved mouse survival compared to the untreated controls. CONCLUSION The 4-Cl CA exhibited inhibitory effects against C. albicans through both in vivo and in vitro models, demonstrating its therapeutic potential as a promising new drug candidate for treating drug-resistant candidiasis albicans.
Collapse
Affiliation(s)
- Yujiao Long
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, 443002, China; Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Jinchuan Xu
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Zhidong Hu
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Xiao-Yong Fan
- Shanghai Institute of Infectious Diseases and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| | - Hui Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
3
|
Li S, Tang Z, Liu Z, Lv S, Yao C, Wang S, Li F. Antifungal activity of indolicidin-derived peptide In-58 against Sporothrix globosa in vitro and in vivo. Front Med (Lausanne) 2024; 11:1458951. [PMID: 39328314 PMCID: PMC11424419 DOI: 10.3389/fmed.2024.1458951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
In-58, a peptide derived from indolicidin, shows extraordinary antibacterial activity and lower toxicity than indolicidin toward mammalian cells. Here, we investigated the antifungal activity of In-58 against the human pathogen Sporothrix globosa in vitro and in vivo. In-58 markedly inhibited the growth of Sporothrix globosa isolates in microdilution assays and showed no antagonism with any tested antifungal agent (itraconazole, terbinafine or amphotericin B). Scanning electron microscopy and propidium iodide staining indicated that In-58 alters the cell wall integrity and interacts with DNA, leading to disruption of S. globosa in a dose-dependent manner. In S. globosa, the mitochondrial membrane potential decreased and reactive oxygen species increased after treatment with In-58. In vivo experiments in the Galleria mellonella (greater wax moth) larval infection model revealed the effectiveness of In-58 against S. globosa infection with low toxicity. Our results indicate that In-58 possesses remarkable antifungal activity against S. globosa in vitro and in vivo. It has potential as a novel drug for the treatment of sporotrichosis.
Collapse
Affiliation(s)
| | | | | | | | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wu Y, Sun A, Chen F, Zhao Y, Zhu X, Zhang T, Ni G, Wang R. Synthesis, structure-activity relationship and biological evaluation of indole derivatives as anti-Candida albicans agents. Bioorg Chem 2024; 146:107293. [PMID: 38507998 DOI: 10.1016/j.bioorg.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In this work, we synthesized a series of indole derivatives to cope with the current increasing fungal infections caused by drug-resistant Candida albicans. All compounds were evaluated for antifungal activities against Candida albicans in vitro, and the structure-activity relationships (SARs) were analyzed. The results indicated that indole derivatives used either alone or in combination with fluconazole showed good activities against fluconazole-resistant Candida albicans. Further mechanisms studies demonstrated that compound 1 could inhibit yeast-to-hypha transition and biofilm formation of Candida albicans, increase the activity of the efflux pump, the damage of mitochondrial function, and the decrease of intracellular ATP content. In vivo studies, further proved the anti-Candida albicans activity of compound 1 by histological observation. Therefore, compound 1 could be considered as a novel antifungal agent.
Collapse
Affiliation(s)
- Yandan Wu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Aimei Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Fei Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yin Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Xianhu Zhu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Tianbao Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Guanghui Ni
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
5
|
Mendoza Barker M, Saeger S, Campuzano A, Yu JJ, Hung CY. Galleria mellonella Model of Coccidioidomycosis for Drug Susceptibility Tests and Virulence Factor Identification. J Fungi (Basel) 2024; 10:131. [PMID: 38392803 PMCID: PMC10890491 DOI: 10.3390/jof10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Coccidioidomycosis (CM) can manifest as respiratory and disseminated diseases that are caused by dimorphic fungal pathogens, such as Coccidioides species. The inhaled arthroconidia generated during the saprobic growth phase convert into multinucleated spherules in the lungs to complete the parasitic lifecycle. Research on coccidioidal virulence and pathogenesis primarily employs murine models typically associated with low lethal doses (LD100 < 100 spores). However, the Galleria model has recently garnered attention due to its immune system bearing both structural and functional similarities to the innate system of mammals. Our findings indicate that Coccidioides posadasii can convert and complete the parasitic cycle within the hemocoel of the Galleria larva. In Galleria, the LD100 is between 0.5 and 1.0 × 106 viable spores for the clinical isolate Coccidioides posadasii C735. Furthermore, we demonstrated the suitability of this model for in vivo antifungal susceptibility tests to validate the bioreactivity of newly discovered antifungals against Coccidioides. Additionally, we utilized this larva model to screen a Coccidioides posadasii mutant library showing attenuated virulence. Similarly, the identified attenuated coccidioidal mutants displayed a loss of virulence in a commonly used murine model of coccidioidomycosis. In this study, we demonstrated that Galleria larvae can be applied as a model for studying Coccidioides infection.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.M.B.); (S.S.); (A.C.); (J.-J.Y.)
| |
Collapse
|
6
|
Oliveira NJC, Dos Santos Júnior VS, Pierotte IC, Leocádio VAT, Santana LFDA, Marques GVDL, Protti ÍF, Braga SFP, Kohlhoff M, Freitas TR, Sabino ADP, Kronenberger T, Gonçalves JE, Johann S, Santos DA, César IDC, Maltarollo VG, Oliveira RB. Discovery of Lead 2-Thiazolylhydrazones with Broad-Spectrum and Potent Antifungal Activity. J Med Chem 2023; 66:16628-16645. [PMID: 38064359 DOI: 10.1021/acs.jmedchem.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Opportunistic fungal infections represent a global health problem, mainly for immunocompromised individuals. New therapeutical options are needed since several fungal strains show resistance to clinically available antifungal agents. 2-Thiazolylhydrazones are well-known as potent compounds against Candida and Cryptococcus species. A scaffold-focused drug design using machine-learning models was established to optimize the 2-thiazolylhydrazone skeleton and obtain novel compounds with higher potency, better solubility in water, and enhanced absorption. Twenty-nine novel compounds were obtained and most showed low micromolar MIC values against different species of Candida and Cryptococcus spp., including Candida auris, an emerging multidrug-resistant yeast. Among the synthesized compounds, 2-thiazolylhydrazone 28 (MIC value ranging from 0.8 to 52.17 μM) was selected for further studies: cytotoxicity evaluation, permeability study in Caco-2 cell model, and in vivo efficacy against Cryptococcus neoformans in an invertebrate infection model. All results obtained indicate the great potential of 28 as a novel antifungal agent.
Collapse
Affiliation(s)
- Nereu Junio Cândido Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabella Campolina Pierotte
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victor Augusto Teixeira Leocádio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Felipe de Andrade Santana
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Vitor de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ícaro Ferrari Protti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Saulo Fehelberg Pinto Braga
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos (QPNB), Instituto René Rachou (IRR) - FIOCRUZ Minas, Belo Horizonte 30190-009, Brazil
| | - Túlio Resende Freitas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
- Excellence Cluster ″Controlling Microbes to Fight Infections″ (CMFI), 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Isabela da Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Renata Barbosa Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
7
|
Zhang MN, Zhao XO, Cui Q, Zhu DM, Wisal MA, Yu HD, Kong LC, Ma HX. Famotidine Enhances Rifampicin Activity against Acinetobacter baumannii by Affecting OmpA. J Bacteriol 2023; 205:e0018723. [PMID: 37439688 PMCID: PMC10448789 DOI: 10.1128/jb.00187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
The development of novel antibiotic adjuvants is imminent because of the frequent emergence of resistance in Gram-negative bacteria, which severely restricts the efficiency and longevity of commonly used clinical antibiotics. It is reported that famotidine, a clinical inhibitor of gastric acid secretion, enhances the antibacterial activity of rifamycin antibiotics, especially rifampicin, against Gram-negative bacteria and reverses drug resistance. Studies have shown that famotidine disrupts the cell membrane of Acinetobacter baumannii and inhibits the expression of the outer membrane protein ompA gene, while causing a dissipation of the plasma membrane potential, compensatively upregulating the pH gradient and ultimately increasing the accumulation of reactive oxygen species by leading to increased bacterial mortality. In addition, famotidine also inhibited the efflux pump activity and the biofilm formation of A. baumannii. In the Galleria mellonella and mouse infection models, the combination of famotidine and rifampicin increased the survival rate of infected animals and decreased the bacterial load in mouse organs. In conclusion, famotidine has the potential to be a novel rifampicin adjuvant, providing a new option for the treatment of clinical Gram-negative bacterial infections. IMPORTANCE In this study, famotidine was discovered for the first time to have potential as an antibiotic adjuvant, enhancing the antibacterial activity of rifamycin antibiotics against A. baumannii and overcoming the limitations of drug therapy. With the discovery of novel applications for the guanidine-containing medication famotidine, the viability of screening prospective antibiotic adjuvants from guanidine-based molecules was further explored. In addition, famotidine exerts activity by affecting the OmpA protein of the cell membrane, indicating that this protein might be used as a therapeutic drug target to treat A. baumannii infections.
Collapse
Affiliation(s)
- Meng-na Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-ou Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Changchun, China
| | - Qi Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dao-mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Muhammad Asif Wisal
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Han-dong Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Fernandes PDO, Martins JPA, de Melo EB, de Oliveira RB, Kronenberger T, Maltarollo VG. Quantitative structure-activity relationship and machine learning studies of 2-thiazolylhydrazone derivatives with anti- Cryptococcus neoformans activity. J Biomol Struct Dyn 2022; 40:9789-9800. [PMID: 34121616 DOI: 10.1080/07391102.2021.1935321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is a fungus responsible for infections in humans with a significant number of cases in immunosuppressed patients, mainly in underdeveloped countries. In this context, the thiazolylhydrazones are a promising class of compounds with activity against C. neoformans. The understanding of the structure-activity relationship of these derivatives could lead to the design of robust compounds that could be promising drug candidates for fungal infections. Specifically, modern techniques such as 4D-QSAR and machine learning methods were employed in this work to generate two QSAR models (one 2D and one 4D) with high predictive power (r2 for the test set equals to 0.934 and 0.831, respectively), and one random forest classification model was reported with Matthews correlation coefficient equals to 1 and 0.62 for internal and external validations, respectively. The physicochemical interpretation of selected models, indicated the importance of aliphatic substituents at the hydrazone moiety to antifungal activity, corroborating experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Philipe de Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo B de Melo
- Laboratório de Química Medicinal e Ambiental Teórica, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thales Kronenberger
- Department of Pneumonology and Oncology, Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|
10
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10121443. [PMID: 34943654 PMCID: PMC8697972 DOI: 10.3390/antibiotics10121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
11
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021. [PMID: 34943654 DOI: 10.3390/antibiotics10121443/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
12
|
Mannix-Fisher E, McLean S. The antimicrobial activity of silver acetate against Acinetobacter baumannii in a Galleria mellonella infection model. PeerJ 2021; 9:e11196. [PMID: 33981496 PMCID: PMC8071075 DOI: 10.7717/peerj.11196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background The increasing prevalence of bacterial infections that are resistant to antibiotic treatment has caused the scientific and medical communities to look for alternate remedies aimed at prevention and treatment. In addition to researching novel antimicrobials, there has also been much interest in revisiting some of the earliest therapies used by man. One such antimicrobial is silver; its use stretches back to the ancient Greeks but interest in its medicinal properties has increased in recent years due to the rise in antibiotic resistance. Currently antimicrobial silver is found in everything from lunch boxes to medical device implants. Though much is claimed about the antimicrobial efficacy of silver salts the research in this area is mixed. Methods Herein we investigated the efficacy of silver acetate against a carbapenem resistant strain of Acinetobacter baumannii to determine the in vitro activity of this silver salt against a World Health Organisation designated category I critical pathogen. Furthermore, we use the Galleria mellonella larvae model to assess toxicity of the compound and its efficacy in treating infections in a live host. Results We found that silver acetate can be delivered safely to Galleria at medically relevant and antimicrobial levels without detriment to the larvae and that administration of silver acetate to an infection model significantly improved survival. This demonstrates the selective toxicity of silver acetate for bacterial pathogens but also highlights the need for administration of well-defined doses of the antimicrobial to provide an efficacious treatment.
Collapse
Affiliation(s)
- Eden Mannix-Fisher
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
13
|
Vera-González N, Shukla A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front Microbiol 2020; 11:538602. [PMID: 33042051 PMCID: PMC7527432 DOI: 10.3389/fmicb.2020.538602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Candida species can readily colonize a multitude of indwelling devices, leading to biofilm formation. These three-dimensional, surface-associated Candida communities employ a multitude of sophisticated mechanisms to evade treatment, leading to persistent and recurrent infections with high mortality rates. Further complicating matters, the current arsenal of antifungal therapeutics that are effective against biofilms is extremely limited. Antifungal biomaterials are gaining interest as an effective strategy for combating Candida biofilm infections. In this review, we explore biomaterials developed to prevent Candida biofilm formation and those that treat existing biofilms. Surface functionalization of devices employing clinically utilized antifungals, other antifungal molecules, and antifungal polymers has been extremely effective at preventing fungi attachment, which is the first step of biofilm formation. Several mechanisms can lead to this attachment inhibition, including contact killing and release-based killing of surrounding planktonic cells. Eliminating mature biofilms is arguably much more difficult than prevention. Nanoparticles have shown the most promise in disrupting existing biofilms, with the potential to penetrate the dense fungal biofilm matrix and locally target fungal cells. We will describe recent advances in both surface functionalization and nanoparticle therapeutics for the treatment of Candida biofilms.
Collapse
Affiliation(s)
- Noel Vera-González
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| |
Collapse
|
14
|
He ZX, Zhao HH, Wang FK. PCR-detectable Candida DNA exists a short period in the blood of systemic candidiasis murine model. Open Life Sci 2020; 15:677-682. [PMID: 33817256 PMCID: PMC7747513 DOI: 10.1515/biol-2020-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive candidiasis is a major challenge to clinical medicine today. However, traditional fungal diagnostic techniques and empirical treatments have shown great limitations. Although efforts are necessarily needed in methodology standardization and multicenter validation, polymerase chain reaction (PCR) is a very promising assay in detecting fungal pathogens. Using a "heat-shock" DNA preparation method, a rapid and simple PCR protocol for quantification of the Candida albicans (C. albicans) ribosomal DNA was established. The PCR assay could detect Candida DNA as low as 10 CFU/mL in samples prepared by the heat-shock protocol, without any cross-reaction with DNA prepared from other Candida spp. and bacterial pathogens. For simulated blood samples, the PCR test sensitivity of whole blood samples was better than that of plasma and blood cells. In the systemic candidiasis murine model, detectable DNA was only observed within 24 h after C. albicans SC5314 injection, which is much shorter than that observed in the kidney.
Collapse
Affiliation(s)
- Zheng-Xin He
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, People's Republic of China
| | - Hui-Hai Zhao
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, People's Republic of China
| | - Fu-Kun Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, People's Republic of China
| |
Collapse
|
15
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
16
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
17
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
18
|
Junqueira JC, Mylonakis E. Current Status and Trends in Alternative Models to Study Fungal Pathogens. J Fungi (Basel) 2019; 5:jof5010012. [PMID: 30691083 PMCID: PMC6463159 DOI: 10.3390/jof5010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal infections affect over a billion people, with mortality rates estimated at 1⁻2 million per year [...].
Collapse
Affiliation(s)
- Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP 12245-000, Brazil.
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|