1
|
Radwan MH, Alaidaroos BA, Jastaniah SD, Abu el-naga MN, El-Gohary EGE, Barakat EM, ElShafie AM, Abdou MA, Mostafa NG, El-Saadony MT, Momen SA. Evaluation of antibacterial activity induced by Staphylococcus aureus and Ent A in the hemolymph of Spodoptera littoralis. Saudi J Biol Sci 2022; 29:2892-2903. [PMID: 35531219 PMCID: PMC9073143 DOI: 10.1016/j.sjbs.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
The problem of antibiotic resistance considers one of the most dangerous challenges facing the medical field. So, it is necessary to find substitutions to conventional antibiotics. Antimicrobial peptides (AMPs) are a bio-functional derivative that have been observed as one of the important solutions to such upcoming crisis. Owing to their role as the first line of defense against bacteria, fungi, and viruses. This study was conducted to induce the immune response of Spodoptera littoralis larvae by inoculation of sub lethal doses of Staphylococcus aureus and its enterotoxin. Since Staphylococcal enterotoxin A (SEA) considers the major causative agents of Staphylococcal food poisoning, our study oriented to purify and characterize this toxin to provoke its role in yielding AMPs with broad spectrum antimicrobial activity. A great fluctuation was recorded in the biochemical properties of immunized hemolymph not only in the total protein content but also protein banding pattern. Protein bands of ∼22 kDa (attacin-like) and ∼15 kDa (lysozyme-like) were found to be common between the AMPs induced as a result of both treatments. While protein bands of molecular weight ∼70 kDa (phenoloxidase-like) and ∼14 kDa (gloverin-like) were found specific for SEA treatment. Chromatographic analysis using HPLC for the induced AMPs showed different types of amino acids appeared with differences in their quantities and velocities. These peptides exhibited noticeable antimicrobial activity against certain Gram-positive and Gram-negative bacteria. In conclusion, the antimicrobial potential of the antimicrobial peptides (AMP) induced in the larval hemolymph of S. littoralis will be a promising molecule for the development of new therapeutic alternatives.
Collapse
|
2
|
Dos Santos JD, Fugisaki LRDO, Medina RP, Scorzoni L, Alves MDS, de Barros PP, Ribeiro FC, Fuchs BB, Mylonakis E, Silva DHS, Junqueira JC. Streptococcus mutans Secreted Products Inhibit Candida albicans Induced Oral Candidiasis. Front Microbiol 2020; 11:1605. [PMID: 32760375 PMCID: PMC7374982 DOI: 10.3389/fmicb.2020.01605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
In the oral cavity, Candida species form mixed biofilms with Streptococcus mutans, a pathogenic bacterium that can secrete quorum sensing molecules with antifungal activity. In this study, we extracted and fractioned culture filtrate of S. mutans, seeking antifungal agents capable of inhibiting the biofilms, filamentation, and candidiasis by Candida albicans. Active S. mutans UA159 supernatant filtrate components were extracted via liquid-liquid partition and fractionated on a C-18 silica column to resolve S. mutans fraction 1 (SM-F1) and fraction 2 (SM-F2). We found anti-biofilm activity for both SM-F1 and SM-F2 in a dose dependent manner and fungal growth was reduced by 2.59 and 5.98 log for SM-F1 and SM-F2, respectively. The SM-F1 and SM-F2 fractions were also capable of reducing C. albicans filamentation, however statistically significant differences were only observed for the SM-F2 (p = 0.004). SM-F2 efficacy to inhibit C. albicans was confirmed by its capacity to downregulate filamentation genes CPH1, EFG1, HWP1, and UME6. Using Galleria mellonella as an invertebrate infection model, therapeutic treatment with SM-F2 prolonged larvae survival. Examination of the antifungal capacity was extended to a murine model of oral candidiasis that exhibited a reduction in C. albicans colonization (CFU/mL) in the oral cavity when treated with SM-F1 (2.46 log) and SM-F2 (2.34 log) compared to the control (3.25 log). Although both SM-F1 and SM-F2 fractions decreased candidiasis in mice, only SM-F2 exhibited significant quantitative differences compared to the non-treated group for macroscopic lesions, hyphae invasion, tissue lesions, and inflammatory infiltrate. Taken together, these results indicate that the SM-F2 fraction contains antifungal components, providing a promising resource in the discovery of new inhibitors for oral candidiasis.
Collapse
Affiliation(s)
- Jéssica Diane Dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Felipe Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|