1
|
Kurnia D, Lestari S, Mayanti T, Gartika M, Nurdin D. Anti-Infection of Oral Microorganisms from Herbal Medicine of Piper crocatum Ruiz & Pav. Drug Des Devel Ther 2024; 18:2531-2553. [PMID: 38952486 PMCID: PMC11215520 DOI: 10.2147/dddt.s453375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Seftiana Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Denny Nurdin
- Departement of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Rosa R, Abbo LM, Jimenez A, Carter C, Ruiz M, Gerald W, Jimenez Hamann M. Effectiveness of a sodium hypochlorite isotonic solution in decolonization of patients with Candida auris: Learnings from a county health care system. Am J Infect Control 2024; 52:595-598. [PMID: 38007101 DOI: 10.1016/j.ajic.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Candida auris (CA) is an organism that has spread globally over the last decade. We conducted a quality improvement project with the aim of decreasing or eliminating skin colonization of patients with CA through a modified bathing protocol. METHODS An isotonic hypochlorite solution was added to routine bathing protocols for hospitalized patients colonized with CA. Weekly skin swabs from axillary and inguinal areas were tested for the presence of CA using polymerase chain reaction and culture. Multidisciplinary efforts, such as environmental terminal cleaning, dedicated equipment, education, and signage were reinforced among staff to improve patient outcomes. RESULTS A total of 24 patients were included. After 4 weeks of a modified bathing protocol, 81.2% of the patients remained colonized with CA. Three patients were discharged safely to their homes and 3 were transferred to long-term care acute hospitals. Nine patients remained hospitalized after 60 days. Localized rash was reported in 3 patients, which resolved after discontinuation of the product. CONCLUSIONS Modification of our bathing protocols by including an isotonic hypochlorite solution did not lead to skin decolonization of CA. Further studies are needed to identify effective measures to eradicate, eliminate or reduce colonization.
Collapse
Affiliation(s)
- Rossana Rosa
- Infection Prevention and Control Department, Jackson Health System, Miami, FL
| | - Lilian M Abbo
- Infection Prevention and Control Department, Jackson Health System, Miami, FL; Deparment of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Adriana Jimenez
- Infection Prevention and Control Department, Jackson Health System, Miami, FL; Epidemiology Department, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL
| | - Carolyn Carter
- Nursing Administration, Jackson Health System, Miami, FL
| | - Maribel Ruiz
- Infection Prevention and Control Department, Jackson Health System, Miami, FL
| | - Wilson Gerald
- Infection Prevention and Control Department, Jackson Health System, Miami, FL
| | | |
Collapse
|
3
|
Alam H, Srivastava V, Sekgele W, Wani MY, Al-Bogami AS, Molepo J, Ahmad A. Cellular apoptosis and cell cycle arrest as potential therapeutic targets for eugenol derivatives in Candida auris. PLoS One 2023; 18:e0285473. [PMID: 37343020 DOI: 10.1371/journal.pone.0285473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/24/2023] [Indexed: 06/23/2023] Open
Abstract
Candida auris, the youngest Candida species, is known to cause candidiasis and candidemia in humans and has been related to several hospital outbreaks. Moreover, Candida auris infections are largely resistant to the antifungal drugs currently in clinical use, necessitating the development of novel medications and approaches to treat such infections. Following up on our previous studies that demonstrated eugenol tosylate congeners (ETCs) to have antifungal activity, several ETCs (C1-C6) were synthesized to find a lead molecule with the requisite antifungal activity against C. auris. Preliminary tests, including broth microdilution and the MUSE cell viability assay, identified C5 as the most active derivative, with a MIC value of 0.98 g/mL against all strains tested. Cell count and viability assays further validated the fungicidal activity of C5. Apoptotic indicators, such as phosphatidylserine externalization, DNA fragmentation, mitochondrial depolarization, decreased cytochrome c and oxidase activity and cell death confirmed that C5 caused apoptosis in C. auris isolates. The low cytotoxicity of C5 further confirmed the safety of using this derivative in future studies. To support the conclusions drawn in this investigation, additional in vivo experiments demonstrating the antifungal activity of this lead compound in animal models will be needed.
Collapse
Affiliation(s)
- Hammad Alam
- Faculty of Health Sciences, Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Vartika Srivastava
- Faculty of Health Sciences, Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Windy Sekgele
- Faculty of Health Sciences, Department of Oral Biological Sciences, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Julitha Molepo
- Faculty of Health Sciences, Department of Oral Biological Sciences, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Faculty of Health Sciences, Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
4
|
Men P, Zhou Y, Xie L, Zhang X, Zhang W, Huang X, Lu X. Improving the production of the micafungin precursor FR901379 in an industrial production strain. Microb Cell Fact 2023; 22:44. [PMID: 36879280 PMCID: PMC9987125 DOI: 10.1186/s12934-023-02050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Micafungin is an echinocandin-type antifungal agent used for the clinical treatment of invasive fungal infections. It is semisynthesized from the sulfonated lipohexapeptide FR901379, a nonribosomal peptide produced by the filamentous fungus Coleophoma empetri. However, the low fermentation efficiency of FR901379 increases the cost of micafungin production and hinders its widespread clinical application. RESULTS Here, a highly efficient FR901379-producing strain was constructed via systems metabolic engineering in C. empetri MEFC09. First, the biosynthesis pathway of FR901379 was optimized by overexpressing the rate-limiting enzymes cytochrome P450 McfF and McfH, which successfully eliminated the accumulation of unwanted byproducts and increased the production of FR901379. Then, the functions of putative self-resistance genes encoding β-1,3-glucan synthase were evaluated in vivo. The deletion of CEfks1 affected growth and resulted in more spherical cells. Additionally, the transcriptional activator McfJ for the regulation of FR901379 biosynthesis was identified and applied in metabolic engineering. Overexpressing mcfJ markedly increased the production of FR901379 from 0.3 g/L to 1.3 g/L. Finally, the engineered strain coexpressing mcfJ, mcfF, and mcfH was constructed for additive effects, and the FR901379 titer reached 4.0 g/L under fed-batch conditions in a 5 L bioreactor. CONCLUSIONS This study represents a significant improvement for the production of FR901379 and provides guidance for the establishment of efficient fungal cell factories for other echinocandins.
Collapse
Affiliation(s)
- Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330096, China
| | - Xuan Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Men P, Geng C, Zhang X, Zhang W, Xie L, Feng D, Du S, Wang M, Huang X, Lu X. Biosynthesis mechanism, genome mining and artificial construction of echinocandin O-sulfonation. Metab Eng 2022; 74:160-167. [DOI: 10.1016/j.ymben.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
6
|
Zerrouki H, Ibrahim A, Rebiahi SA, Elhabiri Y, Benhaddouche DE, de Groot T, Meis JF, Rolain JM, Bittar F. Emergence of Candida auris in intensive care units in Algeria. Mycoses 2022; 65:753-759. [PMID: 35546294 PMCID: PMC9328195 DOI: 10.1111/myc.13470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Background Currently, Candida auris is among the most serious emerging pathogens that can be associated with nosocomial infections and outbreaks in intensive care units. Clinicians must be able to identify and manage it quickly. Objective Here, we report for the first time in Algeria seven cases of C. auris infection or colonisation. Methods and Results The strains were isolated from clinical sites including bronchial aspirates (n = 4), wound swabs (n = 1), urine sample (n = 1) and peritoneal fluid (n = 1), in patients admitted to the intensive care unit. Candida auris was identified both by MALDI‐TOF and by sequencing the ITS region and the D1/D2 domain. Antifungal susceptibility testing was performed using the E‐test method. Non‐wildtype susceptibility was observed for five strains against fluconazole, itraconazole, voriconazole and caspofungin. Genotyping showed the presence of four clades (I–IV) in one hospital. Conclusions Appropriate antifungal treatments with rapid and accurate microbial identification are the cornerstone for the management and control of C. auris infections.
Collapse
Affiliation(s)
- Hanane Zerrouki
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | - Ahmad Ibrahim
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Sid-Ahmed Rebiahi
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratoire de Microbiologie Appliquée à l'Agroalimentaire, au Biomédical et à l'Environnement, Université de Tlemcen, Tlemcen, Algeria
| | | | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands.,Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands.,Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Fadi Bittar
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876-894. [PMID: 35296203 PMCID: PMC8933026 DOI: 10.1080/14756366.2022.2050224] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of β-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.
Collapse
Affiliation(s)
- Mateusz Szymański
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Sandra Chmielewska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland
| | - Urszula Czyżewska
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Marta Malinowska
- Department of Organic Chemistry, Laboratory of Natural Product Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Tylicki
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
|
9
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|