1
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Kuo CY, Tay RJ, Lin HC, Juan SC, Vidal-Diez de Ulzurrun G, Chang YC, Hoki J, Schroeder FC, Hsueh YP. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol 2024; 9:1738-1751. [PMID: 38649409 DOI: 10.1038/s41564-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The ability to sense prey-derived cues is essential for predatory lifestyles. Under low-nutrient conditions, Arthrobotrys oligospora and other nematode-trapping fungi develop dedicated structures for nematode capture when exposed to nematode-derived cues, including a conserved family of pheromones, the ascarosides. A. oligospora senses ascarosides via conserved MAPK and cAMP-PKA pathways; however, the upstream receptors remain unknown. Here, using genomic, transcriptomic and functional analyses, we identified two families of G protein-coupled receptors (GPCRs) involved in sensing distinct nematode-derived cues. GPCRs homologous to yeast glucose receptors are required for ascaroside sensing, whereas Pth11-like GPCRs contribute to ascaroside-independent nematode sensing. Both GPCR classes activate conserved cAMP-PKA signalling to trigger trap development. This work demonstrates that predatory fungi use multiple GPCRs to sense several distinct nematode-derived cues for prey recognition and to enable a switch to a predatory lifestyle. Identification of these receptors reveals the molecular mechanisms of cross-kingdom communication via conserved pheromones also sensed by plants and animals.
Collapse
Affiliation(s)
- Chih-Yen Kuo
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Rebecca J Tay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Chian Juan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason Hoki
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yen-Ping Hsueh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Hu X, Hoffmann DS, Wang M, Schuhmacher L, Stroe MC, Schreckenberger B, Elstner M, Fischer R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat Microbiol 2024; 9:1752-1763. [PMID: 38877225 PMCID: PMC11222155 DOI: 10.1038/s41564-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - David S Hoffmann
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Mai Wang
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Maria C Stroe
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
4
|
Agrawal S, Chavan P, Dufossé L. Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. J Fungi (Basel) 2024; 10:290. [PMID: 38667961 PMCID: PMC11051466 DOI: 10.3390/jof10040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The pressing demand for novel compounds to address contemporary health challenges has prompted researchers to venture into uncharted territory, including extreme ecosystems, in search of new natural pharmaceuticals. Fungi capable of tolerating extreme conditions, known as extremophilic fungi, have garnered attention for their ability to produce unique secondary metabolites crucial for defense and communication, some of which exhibit promising clinical significance. Among these, halophilic fungi thriving in high-salinity environments have particularly piqued interest for their production of bioactive molecules. This review highlights the recent discoveries regarding novel compounds from halotolerant fungal strains isolated from various saline habitats. From diverse fungal species including Aspergillus, Penicillium, Alternaria, Myrothecium, and Cladosporium, a plethora of intriguing molecules have been elucidated, showcasing diverse chemical structures and bioactivity. These compounds exhibit cytotoxicity against cancer cell lines such as A549, HL60, and K-562, antimicrobial activity against pathogens like Escherichia coli, Bacillus subtilis, and Candida albicans, as well as radical-scavenging properties. Notable examples include variecolorins, sclerotides, alternarosides, and chrysogesides, among others. Additionally, several compounds display unique structural motifs, such as spiro-anthronopyranoid diketopiperazines and pentacyclic triterpenoids. The results emphasize the significant promise of halotolerant fungi in providing bioactive compounds for pharmaceutical, agricultural, and biotechnological uses. However, despite their potential, halophilic fungi are still largely unexplored as sources of valuable compounds.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), V Ramalingaswami Bhawan, Ansari Nagar-AIIMS (All India Institute of Medical Sciences), Delhi 110029, India
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Pruthviraj Chavan
- ICMR-National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, ChemBioPro, Université de La Réunion, Ecole Supérieure d’Ingénieurs—Réunion, Océan Indien ESIROI Agroalimentaire, 97410 Saint-Denis, France
| |
Collapse
|
5
|
Liu Q, Jiang K, Duan S, Zhao N, Shen Y, Zhu L, Zhang KQ, Yang J. Identification of a transcription factor AoMsn2 of the Hog1 signaling pathway contributes to fungal growth, development and pathogenicity in Arthrobotrys oligospora. J Adv Res 2024:S2090-1232(24)00052-3. [PMID: 38331317 DOI: 10.1016/j.jare.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Arthrobotrys oligospora has been utilized as a model strain to study the interaction between fungi and nematodes owing to its ability to capture nematodes by developing specialized traps. A previous study showed that high-osmolarity glycerol (Hog1) signaling regulates the osmoregulation and nematocidal activity of A. oligospora. However, the function of downstream transcription factors of the Hog1 signaling in the nematode-trapping (NT) fungi remains unclear. OBJECTIVE This study aimed to investigate the functions and potential regulatory network of AoMsn2, a downstream transcription factor of the Hog1 signaling pathway in A. oligospora. METHODS The function of AoMsn2 was characterized using targeted gene deletion, phenotypic experiments, real-time quantitative PCR, RNA sequencing, untargeted metabolomics, and yeast two-hybrid analysis. RESULTS Loss of Aomsn2 significantly enlarged and swollen the hyphae, with an increase in septa and a significant decrease in nuclei. In particular, spore yield, spore germination rate, traps, and nematode predation efficiency were remarkably decreased in the mutants. Phenotypic and transcriptomic analyses revealed that AoMsn2 is essential for fatty acid metabolism and autophagic pathways. Additionally, untargeted metabolomic analysis identified an important function of AoMsn2 in the modulation of secondary metabolites. Furtherly, we analyzed the protein interaction network of AoMsn2 based on the Kyoto Encyclopedia of Genes and Genomes pathway map and the online website STRING. Finally, Hog1 and six putative targeted proteins of AoMsn2 were identified by Y2H analysis. CONCLUSION Our study reveals that AoMsn2 plays crucial roles in the growth, conidiation, trap development, fatty acid metabolism, and secondary metabolism, as well as establishes a broad basis for understanding the regulatory mechanisms of trap morphogenesis and environmental adaptation in NT fungi.
Collapse
Affiliation(s)
- Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
6
|
Wang W, Liu Y, Duan S, Bai N, Zhu M, Yang J. Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora. Microbiol Res 2024; 278:127516. [PMID: 37857124 DOI: 10.1016/j.micres.2023.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Signal-mediated cell fusion is vital for colony development in filamentous fungi. Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that produces adhesive networks (traps) to capture nematodes. Here, we characterized Aoadv-1, Aoso, Aoham-6, and Aoham-5 of A. oligospora, homologs of proteins involved in cellular communication and fusion in the model fungus Neurospora crassa. The deletion of four genes resulted in the complete loss of cell fusion, and traps produced by mutants did not close to form mycelial rings but were still capable of capturing nematodes. The absence of these genes inhibits aerial mycelial extension, slows colony growth, and increases mycelial branching. In addition, the mutants showed reduced sporulation capacity and tolerance to oxidative stress, increased sensitivity to SDS, and disturbed lipid droplet accumulation and autophagy. In addition, transcriptome and metabolomic analyses suggested that Aoadv-1 and Aoso are involved in multiple cellular processes and secondary metabolism. Our results revealed that Aoadv-1, Aoso, Aoham-6, and Aoham-5 regulate mycelial growth and trap morphogenesis through cell fusion, which contributed to elucidating the molecular mechanisms of cellular communication regulating mycelial development and trap morphogenesis in NT fungi.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
7
|
Zhao X, Fan Y, Zhang L, Zhang W, Xiang M, Kang S, Wang S, Liu X. Multiple Roles of the Low-Affinity Calcium Uptake System in Drechslerella dactyloides, a Nematode-Trapping Fungus That Forms Constricting Rings. J Fungi (Basel) 2023; 9:975. [PMID: 37888231 PMCID: PMC10607529 DOI: 10.3390/jof9100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: the low-affinity calcium uptake system (LACS) has been shown to play a crucial role in the conidiation and formation of adhesive nets and knobs by nematode-trapping fungi (NTF), but its involvement in the formation of constricting rings (CRs), mechanical traps to capture free-living nematodes, remains unexplored. (2) Methods: we investigated the function of two LACS genes (DdaFIG_1 and DdaFIG_2) in Drechslerella dactyloides, an NTF that forms CRs. We generated single (DdaFIG_1Ri and DdaFIG_2Ri) and double (DdaFIG_1,2Ri) knockdown mutants via the use of RNA interference (RNAi). (3) Results: suppression of these genes significantly affected conidiation, trap formation, vegetative growth, and response to diverse abiotic stresses. The number of CRs formed by DdaFIG_1Ri, DdaFIG_2Ri, and DdaFIG_1,2Ri decreased to 58.5%, 59.1%, and 38.9% of the wild-type (WT) level, respectively. The ring cell inflation rate also decreased to 73.6%, 60.6%, and 48.8% of the WT level, respectively. (4) Conclusions: the LACS plays multiple critical roles in diverse NTF.
Collapse
Affiliation(s)
- Xiaozhou Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Zhu M, Liu Y, Yang X, Zhu L, Shen Y, Duan S, Yang J. p21-activated kinase is involved in the sporulation, pathogenicity, and stress response of Arthrobotrys oligospora under the indirect regulation of Rho GTPase-activating protein. Front Microbiol 2023; 14:1235283. [PMID: 37779704 PMCID: PMC10537225 DOI: 10.3389/fmicb.2023.1235283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.
Collapse
Affiliation(s)
- Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Xie M, Bai N, Yang X, Liu Y, Zhang KQ, Yang J. Fus3 regulates asexual development and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. iScience 2023; 26:107404. [PMID: 37609635 PMCID: PMC10440713 DOI: 10.1016/j.isci.2023.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, P.R. China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
10
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
11
|
Bai N, Xie M, Liu Q, Wang W, Liu Y, Yang J. AoSte12 Is Required for Mycelial Development, Conidiation, Trap Morphogenesis, and Secondary Metabolism by Regulating Hyphal Fusion in Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2023; 11:e0395722. [PMID: 36786575 PMCID: PMC10101105 DOI: 10.1128/spectrum.03957-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Nematode-trapping (NT) fungi are a unique group of carnivorous microorganisms that can capture and digest nematodes by producing ingenious trapping devices (traps). Arthrobotrys oligospora, a representative NT fungus, can develop adhesive three-dimensional networks for nematode predation. Hyphal fusion is indispensable for the trap formation of A. oligospora. Here, we characterized an orthologous Ste12 protein (AoSte12) in A. oligospora via gene disruption, DNA affinity purification sequencing (DAP-Seq), and multi-omics approaches. The disruption of the Aoste12 gene caused an increase in hyphal fusion and resulted in defects in mycelial growth, conidiation, trap morphology, and stress resistance, as well as reducing the number of nuclei and lipid droplet accumulation. Moreover, transcriptome and DAP-Seq analysis revealed that AoSte12 was involved in cellular processes associated with growth, cell fusion, the tricarboxylic acid cycle, vesicles, actin filaments, and lipid metabolism. In addition, combining metabolome with transcriptome and DAP-Seq analysis indicated that AoSte12 was involved in the mitogen-activated protein kinase signaling pathway, lipid metabolism, and secondary metabolites. A yeast two-hybrid assay revealed that AoSte12 can interact with diverse proteins, such as the MAK-2 orthologue protein Fus3, the vacuolar sorting protein Pep3, and UDP-glycosyltransferase. Our results suggest that AoSte12 plays an indispensable role in hyphal fusion and thus regulates sporulation and trap morphogenesis. These results provide deep insights into the connection between hyphal fusion and trap formation in NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are an important natural enemy of nematodes and can capture their prey by producing traps. Hyphal anastomosis and fusion are important for mycelial growth and the colony morphological development of filamentous fungi and are also crucial for the trap morphogenesis of NT fungi. Arthrobotrys oligospora can form complex three-dimensional networks (traps) when sensing the presence of nematodes. This study revealed that AoSte12 is indispensable for hyphal fusion and that it regulates mycelial growth, conidiation, trap morphogenesis, stress resistance, the number of nuclei, and lipid droplet accumulation in A. oligospora. In addition, DNA affinity purification sequencing, transcriptome, and metabolome analyses further revealed that AoSte12 is involved in the mitogen-activated protein kinase pathway, lipid metabolism, and secondary metabolism. Overall, these findings expand the important role of AoSte12 in NT fungus A. oligospora and provide a broad foundation for elucidating the regulatory mechanism of trap development and the lifestyle transitions of pathogenic fungi.
Collapse
Affiliation(s)
- Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
12
|
Roles of the Fungal-Specific Lysine Biosynthetic Pathway in the Nematode-Trapping Fungus Arthrobotrys oligospora Identified through Metabolomics Analyses. J Fungi (Basel) 2023; 9:jof9020206. [PMID: 36836320 PMCID: PMC9963897 DOI: 10.3390/jof9020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In higher fungi, lysine is biosynthesized via the α-aminoadipate (AAA) pathway, which differs from plants, bacteria, and lower fungi. The differences offer a unique opportunity to develop a molecular regulatory strategy for the biological control of plant parasitic nematodes, based on nematode-trapping fungi. In this study, in the nematode-trapping fungus model Arthrobotrys oligospora, we characterized the core gene in the AAA pathway, encoding α-aminoadipate reductase (Aoaar), via sequence analyses and through comparing the growth, and biochemical and global metabolic profiles of the wild-type and Aoaar knockout strains. Aoaar not only has α-aminoadipic acid reductase activity, which serves fungal L-lysine biosynthesis, but it also is a core gene of the non-ribosomal peptides biosynthetic gene cluster. Compared with WT, the growth rate, conidial production, number of predation rings formed, and nematode feeding rate of the ΔAoaar strain were decreased by 40-60%, 36%, 32%, and 52%, respectively. Amino acid metabolism, the biosynthesis of peptides and analogues, phenylpropanoid and polyketide biosynthesis, and lipid metabolism and carbon metabolism were metabolically reprogrammed in the ΔAoaar strains. The disruption of Aoaar perturbed the biosynthesis of intermediates in the lysine metabolism pathway, then reprogrammed amino acid and amino acid-related secondary metabolism, and finally, it impeded the growth and nematocidal ability of A. oligospora. This study provides an important reference for uncovering the role of amino acid-related primary and secondary metabolism in nematode capture by nematode-trapping fungi, and confirms the feasibility of Aoarr as a molecular target to regulate nematode-trapping fungi to biocontrol nematodes.
Collapse
|
13
|
Abstract
Nematode-trapping fungi (NTF) are the majority of carnivorous microbes to capture nematodes through diverse and sophisticated trapping organs derived from hyphae. They can adopt carnivorous lifestyles in addition to saprophytism to obtain extra-nutrition from nematodes. As a special group of fungi, the NTF are not only excellent model organism for studying lifestyle transition of fungi but also natural resources of exploring biological control of nematodes. However, the carnivorous mechanism of NTF remains poorly understood. Nowadays, the omics studies of NTF have provided numerous genes and pathways that are associated with the phenotypes of carnivorous traits, which need molecular tools to verify. Here, we review the development and progress of gene manipulation tools in NTF, including methodology and strategy of transformation, random gene mutagenesis methods and target gene mutagenesis methods. The principle and practical approach for each method was summarized and discussed, and the basic operational flow for each tool was described. This paper offers a clear reference and instruction for researchers who work on NTF as well as other group of fungi.
Collapse
Affiliation(s)
- Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zhu MC, Zhao N, Liu YK, Li XM, Zhen ZY, Zheng YQ, Zhang KQ, Yang JK. The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora. Environ Microbiol 2022; 24:6524-6538. [PMID: 36260054 DOI: 10.1111/1462-2920.16253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.
Collapse
Affiliation(s)
- Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Yan-Kun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Xue-Mei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng-Yi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Qing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
15
|
Chen SA, Lin HC, Hsueh YP. The cAMP-PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3 GENES|GENOMES|GENETICS 2022; 12:6673143. [PMID: 35993904 PMCID: PMC9526039 DOI: 10.1093/g3journal/jkac217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
Sensing environmental factors and responding swiftly to them is essential for all living organisms. For instance, predators must act rapidly once prey is sensed. Nematode-trapping fungi (NTF) are predators that use “traps” differentiated from vegetative hyphae to capture, kill, and consume nematodes. These traps undergo drastic and rapid morphological changes upon nematode induction. Multiple signaling hubs have been shown to regulate this remarkable process. Here, we demonstrate that the conserved cAMP-PKA signaling pathway exerts a crucial role in trap morphogenesis of the nematode-trapping fungi Arthrobotrys oligospora. A gene deletion mutant of the PKA catalytic subunit TPK2 proved insensitive toward nematode presence. Moreover, we show that the G protein alpha subunit GPA2 acts upstream of adenylate cyclase, with GPA2 deletion resulting in substantially reduced trap formation, whereas exogenous provision of cAMP rescued the prey-sensing and trap morphogenesis defects of a gpa2 mutant. Thus, we show that cAMP production triggered by G protein signaling and downstream PKA activity are vital for prey-sensing and trap development in A. oligospora, demonstrating that this highly conserved signaling pathway is critical for nematode-trapping fungi and nematode predator–prey interactions.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica , Section 2, Nangang, Taipei 115, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica , Section 2, Nangang, Taipei 115, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica , Section 2, Nangang, Taipei 115, Taiwan
| |
Collapse
|
16
|
Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0222522. [PMID: 35916406 PMCID: PMC9431048 DOI: 10.1128/spectrum.02225-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex, can sense energy and nutritional status in eukaryotic cells, thereby participating in the regulation of multiple cellular processes. In this study, we characterized the function of the catalytic α-subunit (SNF1) and the two regulatory β- and γ-subunits (GAL83 and SNF4) of AMPK in a representative nematode-trapping fungus, Arthrobotrys oligospora, by gene knockout, phenotypic analysis, and RNA sequencing. The ability of the AMPK complex mutants (including ΔAosnf1, ΔAogal83, and ΔAosnf4) to utilize a nonfermentable carbon source (glycerol) was reduced, and the spore yields and trap formation were remarkably decreased. Moreover, AMPK plays an important role in regulating stress response and nematode predation efficiency. Transcriptomic profiling between the wild-type strain and ΔAosnf1 showed that differentially expressed genes were enriched for peroxisome, endocytosis, fatty acid degradation, and multilipid metabolism (sphingolipid, ether lipid, glycerolipid, and glycerophospholipid). Meanwhile, a reduced lipid droplet accumulation in ΔAosnf1, ΔAogal83, and ΔAosnf4 mutants was observed, and more vacuoles appeared in the mycelia of the ΔAosnf1 mutant. These results highlight the important regulatory role of AMPK in the utilization of carbon sources and lipid metabolism, as well as providing novel insights into the regulatory mechanisms of the mycelia development, conidiation, and trap formation of nematode-trapping (NT) fungi. IMPORTANCE NT fungi are widely distributed in various ecosystems and are important factors in the control of nematode populations in nature; their trophic mycelia can form unique infectious devices (traps) for capturing nematodes. Arthrobotrys oligospora is a representative NT fungi which can develop complex three-dimensional networks (adhesive networks) for nematode predation. Here, we demonstrated that AMPK plays an important role in the glycerol utilization, conidiation, trap formation, and nematode predation of A. oligospora, which was further confirmed by transcriptomic analysis of the wild-type and mutant strains. In particular, our analysis indicated that AMPK is required for lipid metabolism, which is primarily associated with energy regulation and is essential for trap formation. Therefore, this study extends the functional study of AMPK in NT fungi and helps to elucidate the molecular mechanism of the regulation of trap development, as well as laying the foundation for the development of efficient nematode biocontrol agents.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
17
|
Yang L, Li X, Ma Y, Zhang K, Yang J. The Arf-GAP Proteins AoGcs1 and AoGts1 Regulate Mycelial Development, Endocytosis, and Pathogenicity in Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:463. [PMID: 35628718 PMCID: PMC9146637 DOI: 10.3390/jof8050463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Small GTPases from the ADP-ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) regulate mycelial development, endocytosis, and virulence in fungi. Here, we identified two orthologous Arf-GAP proteins, AoGcs1 and AoGts1, in a typical nematode-trapping fungus Arthrobotrys oligospora. The transcription of Aogcs1 and Aogts1 was highly expressed in the sporulation stage. The deletion of Aogcs1 and Aogts1 caused defects in DNA damage, endocytosis, scavenging of reactive oxygen species, lipid droplet storage, mitochondrial activity, autophagy, serine protease activity, and the response to endoplasmic reticulum stress. The combined effects resulted in slow growth, decreased sporulation capacity, increased susceptibility to chemical stressors and heat shock, and decreased pathogenicity of the mutants compared with the wild-type (WT) strain. Although deletion of Aogcs1 and Aogts1 produced similar phenotfypic traits, their roles varied in conidiation and proteolytic activity. The ΔAogts1 mutant showed a remarkable reduction in conidial yield compared with the WT strain but not in proteolytic activity; in contrast, the ΔAogcs1 mutant showed an increase in proteolytic activity but not in sporulation. In addition, the growth of ΔAogcs1 and ΔAogts1 mutants was promoted by rapamycin, and the ΔAogts1 mutant was sensitive to H-89. Collectively, the ΔAogts1 mutant showed a more remarkable difference compared with the WT strain than the ΔAogcs1 mutant. Our study further illustrates the importance of Arf-GAPs in the growth, development, and pathogenicity of nematode-trapping fungi.
Collapse
Affiliation(s)
| | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China; (L.Y.); (X.L.); (Y.M.); (K.Z.)
| |
Collapse
|
18
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
19
|
Jiang KX, Liu QQ, Bai N, Zhu MC, Zhang KQ, Yang JK. AoSsk1, a Response Regulator Required for Mycelial Growth and Development, Stress Responses, Trap Formation, and the Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:jof8030260. [PMID: 35330262 PMCID: PMC8952730 DOI: 10.3390/jof8030260] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Ssk1, a response regulator of the two-component signaling system, plays an important role in the cellular response to hyperosmotic stress in fungi. Herein, an ortholog of ssk1 (Aossk1) was characterized in the nematode-trapping fungus Arthrobotrys oligospora using gene disruption and multi-phenotypic comparison. The deletion of Aossk1 resulted in defective growth, deformed and swollen hyphal cells, an increased hyphal septum, and a shrunken nucleus. Compared to the wild-type (WT) strain, the number of autophagosomes and lipid droplets in the hyphal cells of the ΔAossk1 mutant decreased, whereas their volumes considerably increased. Aossk1 disruption caused a 95% reduction in conidial yield and remarkable defects in tolerance to osmotic and oxidative stress. Meanwhile, the transcript levels of several sporulation-related genes were significantly decreased in the ΔAossk1 mutant compared to the WT strain, including abaA, brlA, flbC, fluG, and rodA. Moreover, the loss of Aossk1 resulted in a remarkable increase in trap formation and predation efficiency. In addition, many metabolites were markedly downregulated in the ΔAossk1 mutant compared to the WT strain. Our results highlight that AoSsk1 is a crucial regulator of asexual development, stress responses, the secondary metabolism, and pathogenicity, and can be useful in probing the regulatory mechanism underlying the trap formation and lifestyle switching of nematode-trapping fungi.
Collapse
Affiliation(s)
- Ke-Xin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qian-Qian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Zhou D, Zhu Y, Bai N, Xie M, Zhang KQ, Yang J. Aolatg1 and Aolatg13 Regulate Autophagy and Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Cell Infect Microbiol 2022; 11:824407. [PMID: 35145926 PMCID: PMC8821819 DOI: 10.3389/fcimb.2021.824407] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotes that plays an important role in cell growth, development, and pathogenicity. Atg1 and Atg13 form the Atg1–Atg13 complex, which is essential for autophagy in yeast. Here, we characterized the roles of the Aolatg1 and Aolatg13 genes encoding these autophagy-related proteins in the nematode-trapping fungus Arthrobotrys oligospora. Investigation of the autophagy process by using the AoAtg8-GFP fusion protein showed that autophagosomes accumulated inside vacuoles in the wild-type (WT) A. oligospora strain, whereas in the two mutant strains with deletions of Aolatg1 or Aolatg13, GFP signals were observed outside vacuoles. Similar results were observed by using transmission electron microscopy. Furthermore, deletion of Aolatg1 caused severe defects in mycelial growth, conidiation, conidial germination, trap formation, and nematode predation. In addition, transcripts of several sporulation-related genes were significantly downregulated in the ΔAolatg1 mutant. In contrast, except for the altered resistance to several chemical stressors, no obvious differences were observed in phenotypic traits between the WT and ΔAolatg13 mutant strains. The gene ontology analysis of the transcription profiles of the WT and ΔAolatg1 mutant strains showed that the set of differentially expressed genes was highly enriched in genes relevant to membrane and cellular components. The Kyoto Encyclopedia of Genes and Genomes analysis indicated that differentially expressed genes were highly enriched in those related to metabolic pathways, autophagy and autophagy-related processes, including ubiquitin-mediated proteolysis and SNARE interaction in vesicular transport, which were enriched during trap formation. These results indicate that Aolatg1 and Aolatg13 play crucial roles in the autophagy process in A. oligospora. Aolatg1 is also involved in the regulation of asexual growth, trap formation, and pathogenicity. Our results highlight the importance of Aolatg1 in the growth and development of A. oligospora, and provide a basis for elucidating the role of autophagy in the trap formation and pathogenicity of nematode-trapping fungi.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yingmei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- *Correspondence: Jinkui Yang,
| |
Collapse
|
21
|
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0175921. [PMID: 35019695 PMCID: PMC8754127 DOI: 10.1128/spectrum.01759-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nematode-trapping (NT) fungi can form unique infection structures (traps) to capture and kill free-living nematodes and, thus, can play a potential role in the biocontrol of nematodes. Arthrobotrys oligospora is a representative species of NT fungi. Here, we performed a time course transcriptome sequencing (RNA-seq) analysis of transcriptomes to understand the global gene expression levels of A. oligospora during trap formation and predation. We identified 5,752 unique differentially expressed genes, among which the rac gene was significantly upregulated. Alternative splicing events occurred in 2,012 genes, including the rac and rho2 gene. Furthermore, we characterized three Rho GTPases (Rho2, Rac, and Cdc42) in A. oligospora using gene disruption and multiphenotypic analysis. Our analyses showed that AoRac and AoCdc42 play an important role in mycelium growth, lipid accumulation, DNA damage, sporulation, trap formation, pathogenicity, and stress response in A. oligospora. AoCdc42 and AoRac specifically interacted with components of the Nox complex, thus regulating the production of reactive oxygen species. Moreover, the transcript levels of several genes associated with protein kinase A, mitogen-activated protein kinase, and p21-activated kinase were also altered in the mutants, suggesting that Rho GTPases might function upstream from these kinases. This study highlights the important role of Rho GTPases in A. oligospora and provides insights into the regulatory mechanisms of signaling pathways in the trap morphogenesis and lifestyle transition of NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are widely distributed in terrestrial and aquatic ecosystems. Their broad adaptability and flexible lifestyles make them ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a model species employed for understanding the interaction between fungi and nematodes. Here, we revealed that alternative splicing events play a crucial role in the trap development and lifestyle transition in A. oligospora. Furthermore, Rho GTPases exert differential effects on the growth, development, and pathogenicity of A. oligospora. In particular, AoRac is required for sporulation and trap morphogenesis. In addition, our analysis showed that Rho GTPases regulate the production of reactive oxygen species and function upstream from several kinases. Collectively, these results expand our understanding of gene expression and alternative splicing events in A. oligospora and the important roles of Rho GTPases in NT fungi, thereby providing a foundation for exploring their potential application in the biocontrol of pathogenic nematodes.
Collapse
|
22
|
Lv G, Zhu Y, Cheng X, Cao Y, Zeng B, Liu X, He B. Transcriptomic Responses of Cordyceps militaris to Salt Treatment During Cordycepins Production. Front Nutr 2022; 8:793795. [PMID: 35004818 PMCID: PMC8733472 DOI: 10.3389/fnut.2021.793795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Cordycepin is a major bioactive compound found in Cordyceps militaris (C. militaris) that exhibits a broad spectrum of biological activities. Hence, it is potentially a bioactive ingredient of pharmaceutical and cosmetic products. However, overexploitation and low productivity of natural C. militaris is a barrier to commercialization, which leads to insufficient supply to meet its existing market demands. In this study, a preliminary study of distinct concentrations of salt treatments toward C. militaris was conducted. Although the growth of C. militaris was inhibited by different salt treatments, the cordycepin production increased significantly accompanied by the increment of salt concentration. Among them, the content of cordycepin in the 7% salt-treated group was five-fold higher than that of the control group. Further transcriptome analysis of samples with four salt concentrations, coupled with Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, several differentially expressed genes (DEGs) were found. Finally, dynamic changes of the expression patterns of four genes involved in the cordycepin biosynthesis pathway were observed by the quantitative real-time PCR. Taken together, our study provides a global transcriptome characterization of the salt treatment adaptation process in C. militaris and facilitates the construction of industrial strains with a high cordycepin production and salt tolerance.
Collapse
Affiliation(s)
- Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yue Zhu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Cao
- Information Institute of Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xinping Liu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
23
|
Wernet V, Wäckerle J, Fischer R. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genetics 2022; 220:iyab153. [PMID: 34849851 PMCID: PMC8733638 DOI: 10.1093/genetics/iyab153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation, and pathogenicity. In this study, we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| |
Collapse
|
24
|
Genomic and Metabolomic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential. J Fungi (Basel) 2021; 8:jof8010031. [PMID: 35049971 PMCID: PMC8780691 DOI: 10.3390/jof8010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
The genus Emericellopsis is found in terrestrial, but mainly in marine, environments with a worldwide distribution. Although Emericellopsis has been recognized as an important source of bioactive compounds, the range of metabolites expressed by the species of this genus, as well as the genes involved in their production are still poorly known. Untargeted metabolomics, using UPLC- QToF–MS/MS, and genome sequencing (Illumina HiSeq) was performed to unlock E. cladophorae MUM 19.33 chemical diversity. The genome of E. cladophorae is 26.9 Mb and encodes 8572 genes. A large set of genes encoding carbohydrate-active enzymes (CAZymes), secreted proteins, transporters, and secondary metabolite biosynthetic gene clusters were identified. Our analysis also revealed genomic signatures that may reflect a certain fungal adaptability to the marine environment, such as genes encoding for (1) the high-osmolarity glycerol pathway; (2) osmolytes’ biosynthetic processes; (3) ion transport systems, and (4) CAZymes classes allowing the utilization of marine polysaccharides. The fungal crude extract library constructed revealed a promising source of antifungal (e.g., 9,12,13-Trihydroxyoctadec-10-enoic acid, hymeglusin), antibacterial (e.g., NovobiocinA), anticancer (e.g., daunomycinone, isoreserpin, flavopiridol), and anti-inflammatory (e.g., 2’-O-Galloylhyperin) metabolites. We also detected unknown compounds with no structural match in the databases used. The metabolites’ profiles of E. cladophorae MUM 19.33 fermentations were salt dependent. The results of this study contribute to unravel aspects of the biology and ecology of this marine fungus. The genome and metabolome data are relevant for future biotechnological exploitation of the species.
Collapse
|
25
|
Ma N, Zhao Y, Wang Y, Yang L, Li D, Yang J, Jiang K, Zhang KQ, Yang J. Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus Arthrobotrys oligospora. Virulence 2021; 12:1825-1840. [PMID: 34224331 PMCID: PMC8259722 DOI: 10.1080/21505594.2021.1948667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/09/2023] Open
Abstract
Regulators of G protein signaling (RGSs) are proteins that negatively regulate G protein signal transduction. In this study, seven putative RGSs were characterized in the nematode-trapping (NT) fungus, Arthrobotrys oligospora. Deleting Rgs genes significantly increased intracellular cAMP levels, and caused defects in mycelia growth, stress resistance, conidiation, trap formation, and nematocidal activity. In particular, the ΔAoFlbA mutant was unable to produce conidia and traps. Transcriptomic analysis showed that amino acid metabolic and biosynthetic processes were significantly enriched in the ΔAoFlbA mutant compared to WT. Interestingly, Gas1 family genes are significantly expanded in A. oligospora and other NT fungi that produce adhesive traps, and are differentially expressed during trap formation in A. oligospora. Disruption of two Gas1 genes resulted in defective conidiation, trap formation, and pathogenicity. Our results indicate that RGSs play pleiotropic roles in regulating A. oligospora mycelial growth, development, and pathogenicity. Further, AoFlbA is a prominent member and required for conidiation and trap formation, possibly by regulating amino acid metabolism and biosynthesis. Our results provide a basis for elucidating the signaling mechanism of vegetative growth, lifestyle transition, and pathogenicity in NT fungi.
Collapse
Affiliation(s)
- Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Yunchuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, KunmingP. R. China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Jiangliu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| |
Collapse
|
26
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Chen SA, Lin HC, Schroeder FC, Hsueh YP. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021; 217:5995318. [PMID: 33724405 DOI: 10.1093/genetics/iyaa008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator-prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
28
|
Xie M, Yang J, Jiang K, Bai N, Zhu M, Zhu Y, Zhang KQ, Yang J. AoBck1 and AoMkk1 Are Necessary to Maintain Cell Wall Integrity, Vegetative Growth, Conidiation, Stress Resistance, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2021; 12:649582. [PMID: 34239505 PMCID: PMC8258383 DOI: 10.3389/fmicb.2021.649582] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022] Open
Abstract
The cell wall integrity (CWI) pathway is composed of three mitogen-activated protein kinases (MAPKs), Bck1, Mkk1/2, and Slt2, and is one of the main signaling pathways for fungal pathogenesis, cell wall synthesis, and integrity maintenance. In this study, we characterized orthologs of Saccharomyces cerevisiae Bck1 and Mkk1 in the nematode-trapping (NT) fungus Arthrobotrys oligospora by multiple phenotypic comparison, and the regulation of conidiation and cell wall synthesis was analyzed using real-time PCR (RT-PCR). Both ΔAoBck1 and ΔAoMkk1 mutants showed severe defects in vegetative growth, cell nucleus number, and stress resistance. Both the mutants were unable to produce spores, and the transcription of several genes associated with sporulation and cell wall biosynthesis was markedly downregulated during the conidiation stage. Further, cell walls of the ΔAoBck1 and ΔAoMkk1 mutants were severely damaged, and the Woronin body failed to respond to cellular damage. In particular, the mutants lost the ability to produce mycelial traps for nematode predation. Taken together, AoBck1 and AoMkk1 play a conserved role in mycelial growth and development, CWI, conidiation, multi-stress tolerance, trap formation, and pathogenicity. We highlighted the role of AoBck1 and AoMkk1 in regulating the Woronin body response to cellular damage and cell nucleus development in A. oligospora.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Jiangliu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Yingmei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
29
|
Bühring S, Yemelin A, Michna T, Tenzer S, Jacob S. Evidence of a New MoYpd1p Phosphotransferase Isoform in the Multistep Phosphorelay System of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:jof7050389. [PMID: 34063560 PMCID: PMC8156605 DOI: 10.3390/jof7050389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
Different external stimuli are perceived by multiple sensor histidine kinases and transmitted by phosphorylation via the phosphotransfer protein Ypd1p in the multistep phosphorelay system of the high osmolarity glycerol signaling pathway of filamentous fungi. How the signal propagation takes place is still not known in detail since multiple sensor histidine kinase genes in most filamentous fungi are coded in the genome, whereas only one gene for Ypd1p exists. That raises the hypothesis that various Ypd1p isoforms are produced from a single gene sequence, perhaps by alternative splicing, facilitating a higher variability in signal transduction. We found that the mRNA of MoYPD1 in the rice blast fungus Magnaporthe oryzae is subjected to an increased structural variation and amplified putative isoforms on a cDNA level. We then generated mutant strains overexpressing these isoforms, purified the products, and present here one previously unknown MoYpd1p isoform on a proteome level. Alternative splicing was found to be a valid molecular mechanism to increase the signal diversity in eukaryotic multistep phosphorelay systems.
Collapse
Affiliation(s)
- Sri Bühring
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
| | - Alexander Yemelin
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
| | - Thomas Michna
- Institut für Immunologie, Universitätsmedizin der Johannes-Gutenberg Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (T.M.); (S.T.)
| | - Stefan Tenzer
- Institut für Immunologie, Universitätsmedizin der Johannes-Gutenberg Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (T.M.); (S.T.)
| | - Stefan Jacob
- Institute for Biotechnology and Drug Research gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; (S.B.); (A.Y.)
- Correspondence:
| |
Collapse
|