1
|
Li M, Gao S, Yang P, Li H. Improvement of ribonucleic acid production in Cyberlindnera jadinii and optimization of fermentation medium. AMB Express 2024; 14:24. [PMID: 38358520 PMCID: PMC10869677 DOI: 10.1186/s13568-024-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
To enhance the ribonucleic acid (RNA) productivity for industrial applications, this study employed strain screening and medium optimization to improve the content of RNA in Cyberlindnera jadinii. A rapid screening method, combining atmospheric and room temperature plasma mutagenesis, 48-deep-well plates fermentation, and microplate reader detection, was developed. A mutant strain named WB15 with high RNA content was successfully obtained, exhibiting the RNA content of 156 ± 4.5 mg/g DCW, 1.4 times of the starting strain CCTCC AY 92020. Furthermore, Plackett-Burman design and response surface methodology were employed to identify three significant factors (yeast extract, soybean peptone, and KH2PO4) affecting the RNA content. By utilizing the optimal medium composed of 13.43 g/L yeast extract, 12.12 g/L soybean peptone and 2.78 g/L KH2PO4, the RNA content of WB15 further increased to 184 ± 4.9 mg/g DCW. Additionally, the mutant strain WB15 exhibited a greater cellular width compared to AY 92020, along with increased growth rate and single-cell RNA content by 22% and 48.9%, respectively. Perturbations in ribosome assembly, specifically a reduction in the ratio of ribosomal proteins to ribosomal RNA of the large subunit, might indirectly contribute to the higher RNA content in the WB15 strain. Overall, the combination of rapid screening with fermentation medium optimization proved to be an effective approach for improving the RNA content of C. jadinii, thus facilitating the industrial production of RNA.
Collapse
Affiliation(s)
- Mengting Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuhong Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Pengcheng Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hejin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Timlin CL, Dickerson SM, Fowler JW, Mccracken FB, Skaggs PM, Ekmay R, Coon CN. The effects of torula yeast as a protein source on apparent total tract digestibility, inflammatory markers, and fecal microbiota dysbiosis index in Labrador Retrievers with chronically poor stool quality. J Anim Sci 2024; 102:skae013. [PMID: 38267019 PMCID: PMC10858388 DOI: 10.1093/jas/skae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
This study examined the effects of varying protein sources on apparent total tract digestibility, inflammatory markers, and fecal microbiota in Labrador Retrievers with historically poor stool quality. Thirty dogs (15 male, 15 female; aged 0.93 to 11.7 yr) with stool quality scores ≤2.5 on a 5-point scale (1 representing liquid stool and 5 representing firm stool) were randomly assigned to 1 of 3 nutritionally complete diets with differing protein sources and similar macronutrient profiles: 1) chicken meal (n = 10); 2) 10% brewer's yeast (n = 10); or 3) 10% torula yeast (n = 10). Another 10 dogs (five male, five female) with normal stool quality (scores ranging from 3 to 4) received diet 1 and served as negative control (NC). All dogs were fed diet 1 for 7 days, then provided their assigned treatment diets from days 7 to 37. Daily stool scores and weekly body weights were recorded. On days 7, 21, and 36, blood serum was analyzed for c-reactive protein (CRP), and feces for calgranulin C (S100A12), α1-proteinase inhibitor (α1-PI), calprotectin, and microbiota dysbiosis index. Apparent total tract digestibility was assessed using the indicator method with 2 g titanium dioxide administered via oral capsules. Stool scores were greater in NC (P < 0.01) as designed but not affected by treatment × time interaction (P = 0.64). Body weight was greater (P = 0.01) and CRP lower (P < 0.01) in NC dogs. Dry matter and nitrogen-free extract digestibility did not differ among groups (P ≥ 0.14). Negative controls had greater fat digestibility compared to BY (94.64 ± 1.33% vs. 91.65 ± 1.25%; P = 0.02). The overall effect of treatment was significant for protein digestibility (P = 0.03), but there were no differences in individual post hoc comparisons (P ≥ 0.07). Treatment did not affect S100A12 or α1-PI (P ≥ 0.44). Calprotectin decreased at a greater rate over time in TY (P < 0.01). The dysbiosis index score for BY and TY fluctuated less over time (P = 0.01). Blautia (P = 0.03) and Clostridium hiranonis (P = 0.05) abundances were reduced in BY and TY. Dogs with chronically poor stool quality experienced reduced body weights and increased serum CRP, but TY numerically increased protein digestibility, altered the microbiome, and reduced fecal calprotectin. Torula yeast is a suitable alternative protein source in extruded canine diets, but further research is needed to understand the long-term potential for improving the plane of nutrition and modulating gut health.
Collapse
|
3
|
Henderickx JG, Crobach MJ, Terveer EM, Smits WK, Kuijper EJ, Zwittink RD. Fungal and bacterial gut microbiota differ between Clostridioides difficile colonization and infection. MICROBIOME RESEARCH REPORTS 2023; 3:8. [PMID: 38455084 PMCID: PMC10917615 DOI: 10.20517/mrr.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Aim: The bacterial microbiota is well-recognized for its role in Clostridioides difficile colonization and infection, while fungi and yeasts remain understudied. The aim of this study was to analyze the predictive value of the mycobiota and its interactions with the bacterial microbiota in light of C. difficile colonization and infection. Methods: The mycobiota was profiled by ITS2 sequencing of fecal DNA from C. difficile infection (CDI) patients (n = 29), asymptomatically C. difficile colonization (CDC) patients (n = 38), and hospitalized controls with C. difficile negative stool culture (controls; n = 38). Previously published 16S rRNA gene sequencing data of the same cohort were used additionally for machine learning and fungal-bacterial network analysis. Results: CDI patients were characterized by a significantly higher abundance of Candida spp. (MD 0.270 ± 0.089, P = 0.002) and Candida albicans (MD 0.165 ± 0.082, P = 0.023) compared to controls. Additionally, they were deprived of Aspergillus spp. (MD -0.067 ± 0.026, P = 0.000) and Penicillium spp. (MD -0.118 ± 0.043, P = 0.000) compared to CDC patients. Network analysis revealed a positive association between several fungi and bacteria in CDI and CDC, although the analysis did not reveal a direct association between Clostridioides spp. and fungi. Furthermore, the microbiota machine learning model outperformed the models based on the mycobiota and the joint microbiota-mycobiota model. The microbiota classifier successfully distinguished CDI from CDC [Area Under the Receiver Operating Characteristic (AUROC) = 0.884] and CDI from controls (AUROC = 0.905). Blautia and Bifidobacterium were marker genera associated with CDC patients and controls. Conclusion: The gut mycobiota differs between CDI, CDC, and controls and may affect Clostridioides spp. through indirect interactions. The mycobiota data alone could not successfully discriminate CDC from controls or CDI patients and did not have additional predictive value to the bacterial microbiota data. The identification of bacterial marker genera associated with CDC and controls warrants further investigation.
Collapse
Affiliation(s)
- Jannie G.E. Henderickx
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Monique J.T. Crobach
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Elisabeth M. Terveer
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ed J. Kuijper
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Romy D. Zwittink
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
4
|
Yoon H, Park S, Jun YK, Choi Y, Shin CM, Park YS, Kim N, Lee DH. Evaluation of Bacterial and Fungal Biomarkers for Differentiation and Prognosis of Patients with Inflammatory Bowel Disease. Microorganisms 2023; 11:2882. [PMID: 38138026 PMCID: PMC10745905 DOI: 10.3390/microorganisms11122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to evaluate bacterial and fungal biomarkers to differentiate patients with inflammatory bowel disease (IBD), predict the IBD prognosis, and determine the relationship of these biomarkers with IBD pathogenesis. The composition and function of bacteria and fungi in stool from 100 IBD patients and 97 controls were profiled using next-generation sequencing. We evaluated the cumulative risk of relapse according to bacterial and fungal enterotypes. The microbiome and mycobiome alpha diversity in IBD patients were significantly lower and higher than in the controls, respectively; the micro/mycobiome beta diversity differed significantly between IBD patients and the controls. Ruminococcus gnavus, Cyberlindnera jadinii, and Candida tropicalis increased in IBD patients. Combining functional and species analyses revealed that lower sugar import and higher modified polysaccharide production were associated with IBD pathogenesis. Tricarboxylic acid cycling consuming acetyl CoA was higher in IBD patients than the controls, leading to lower short-chain fatty acid (SCFA) fermentation. Bacterial and fungal enterotypes were not associated with IBD relapse. We found differences in bacterial and fungal species between IBD patients and controls. A working model for the role of gut bacteria in IBD pathogenesis is proposed, wherein bacterial species increase modified N-glycan production and decrease SCFA fermentation.
Collapse
Affiliation(s)
- Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sunghyouk Park
- Department of Manufacturing Pharmacy, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Kyung Jun
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (Y.K.J.); (Y.C.); (C.M.S.); (Y.S.P.); (N.K.); (D.H.L.)
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
5
|
Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, Li G, Wang H, Fan F, Zhang X. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains. ACS Synth Biol 2023; 12:2947-2960. [PMID: 37816156 DOI: 10.1021/acssynbio.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.
Collapse
Affiliation(s)
- Lishan Gu
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Rongxin Zhang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuqian Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Yu Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Kaiyu Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jingjing Jiang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Gen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
6
|
Glushakova АМ, Kachalkin АV. Yeast community succession in cow dung composting process. Fungal Biol 2023; 127:1075-1083. [PMID: 37344009 DOI: 10.1016/j.funbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Yeast complexes in the composting process of cow dung prepared to fertilize the soil for growing vegetables and fruits were studied. The average abundance of yeasts changed during the four temperature stages of the composting process. The highest abundance of yeasts, 1.38 × 104 cfu/g, was observed in the second stage of heating from 20 to 40 °C; the lowest was studied in the stage with the highest temperature (65 °C), 1.68 × 103 cfu/g. A total of 19 yeast species were observed and identified: 11 ascomycetes and 8 basidiomycetes, belonging to five subphyla of Fungi: Saccharomycotina (10), Pezizomycotina (1), Agaricomycotina (5), Pucciniomycotina (2), and Ustilaginomycotina (1). The greatest diversity of yeasts was found in the initial (20 °C) and second (heating up to 40 °C) temperature stages of composting (Aureobasidium pullulans (yeast-like fungus), Candida parapsilosis, Candida saitoana, Candida santamariae, Candida tropicalis, Curvibasidium cygneicollum, Cutaneotrichosporon moniliforme, Debaryomyces fabryi, Debaryomyces hansenii, Filobasidium magnum, Kazachstania sp., Moesziomyces bullatus, Naganishia globosa, Papiliotrema flavescens, Rhodotorula mucilaginosa, Scheffersomyces insectosa, Torulaspora delbrueckii, Vanrija musci), and the lowest in the stage of maximum heating (65 °C) (C. parapsilosis, C. tropicalis, Cyberlindnera jadinii).The opportunistic yeasts C. parapsilosis and C. tropicalis were obtained not only in the initial, second and third temperature stages of the composting process, but also in mature compost in the final stage prepared for soil application. This study shows that the cow dung, used in the farm studied did not meet the microbiological safety criteria. The reduction of opportunistic yeast species was not achieved with the composting method used. The likelihood of these species entering agricultural products via compost and soil and developing as endophytes in the internal tissues of fruits is very high. Since some strains of opportunistic Candida species from cow dung exhibited virulent characteristics (they produced hydrolytic enzymes and were resistant to antifungal compounds), additional phenotypic and genetic studies of the compost strains and their comparison with clinical isolates should be pursued.
Collapse
Affiliation(s)
- Аnna М Glushakova
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Аleksey V Kachalkin
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
7
|
Kajadpai N, Angchuan J, Khunnamwong P, Srisuk N. Diversity of duckweed ( Lemnaceae) associated yeasts and their plant growth promoting characteristics. AIMS Microbiol 2023; 9:486-517. [PMID: 37649804 PMCID: PMC10462456 DOI: 10.3934/microbiol.2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023] Open
Abstract
The diversity of duckweed (Lemnaceae) associated yeasts was studied using a culture-dependent method. A total of 252 yeast strains were isolated from 53 duckweed samples out of the 72 samples collected from 16 provinces in Thailand. Yeast identification was conducted based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis. It revealed that 55.2% and 44.8% yeast species were Ascomycota and Basidiomycota duckweed associated yeasts, respectively. Among all, Papiliotrema laurentii, a basidiomycetous yeast, was found as the most prevalent species showing a relative of frequency and frequency of occurrence of 21.8% and 25%, respectively. In this study, high diversity index values were shown, indicated by the Shannon-Wiener index (H'), Shannon equitability index (EH) and Simpson diversity index (1-D) values of 3.48, 0.86 and 0.96, respectively. The present results revealed that the yeast community on duckweed had increased species diversity, with evenness among species. Principal coordinate analysis (PCoA) revealed no marked differences in yeast communities among duckweed genera. The species accumulation curve showed that the observed species richness was lower than expected. Investigation of the plant growth promoting traits of the isolated yeast on duckweed revealed that 178 yeast strains produced indole-3-acetic acid (IAA) at levels ranging from 0.08-688.93 mg/L. Moreover, siderophore production and phosphate solubilization were also studied. One hundred and seventy-three yeast strains produced siderophores and exhibited siderophores that showed 0.94-2.55 activity units (AU). One hundred six yeast strains showed phosphate solubilization activity, expressed as solubilization efficiency (SE) units, in the range of 0.32-2.13 SE. This work indicates that duckweed associated yeast is a potential microbial resource that can be used for plant growth promotion.
Collapse
Affiliation(s)
- Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
8
|
Zhao D, Zhang H, Liu K, Wu Y, Zhang B, Ma C, Liu H. Effect of Cyberlindnera jadinii supplementation on growth performance, serum immunity, antioxidant status, and intestinal health in winter fur-growing raccoon dogs ( Nyctereutes procyonoides). Front Vet Sci 2023; 10:1154808. [PMID: 37252386 PMCID: PMC10213726 DOI: 10.3389/fvets.2023.1154808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction This study aimed to investigate the effects of Cyberlindnera jadinii supplementation on the growth performance, nutrient utilization, serum biochemistry, immunity, antioxidant status, and intestinal microbiota of raccoon dogs during the winter fur-growing period. Methods Forty-five 135 (±5) day-old male raccoon dogs were randomly assigned to three dietary groups supplemented with 0 (group N), 1 × 109 (group L) and 5 × 109 CFU/g (group H) Cyberlindnera jadinii, with 15 raccoon dogs per group. Results The results showed that Cyberlindnera jadinii in groups L and H improved average daily gain (ADG) and decreased feed-to-weight ratio (F/G) (P < 0.05). No significant difference was found in nutrient digestibility and nitrogen metabolism among the three groups (P > 0.05). Compared with group N, serum glucose levels were lower in groups L and H (P < 0.05). The levels of serum immunoglobulins A and G in group L were higher than those in the other two groups (P < 0.05), and the levels of serum immunoglobulins A and M in group H were higher than those in group N (P < 0.05). Supplementation with Cyberlindnera jadinii in groups L and H increased serum superoxide dismutase activity, and the total antioxidant capacity in group H increased compared with group N (P < 0.05). The phyla Bacteroidetes and Firmicutes were dominant in raccoon dogs. The results of principal coordinate analysis (PCoA) showed that the composition of microbiota in the three groups changed significantly (P < 0.05). The relative abundance of Campylobacterota was increased in the H group compared to the N and L groups (P < 0.05). The relative abundance of Sarcina was increased in group L compared with the other two groups (P < 0.05), while the relative abundance of Subdoligranulum and Blautia were decreased in group H compared with the other two groups (P < 0.05). Also, the relative abundance of Prevotella, Sutterella and Catenibacterium was higher in group L (P < 0.05) compared with group H. Discussion In conclusion, dietary supplementation with Cyberlindnera jadinii improved growth performance, antioxidant activity, immune status, and improved intestinal microbiota in winter fur-growing raccoon dogs. Among the concentrations tested, 1 × 109 CFU/g was the most effective level of supplementation.
Collapse
Affiliation(s)
- Dehui Zhao
- College of Agriculture, Chifeng University, Chifeng, China
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yan Wu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Borui Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Cuiliu Ma
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanlu Liu
- College of Agriculture, Chifeng University, Chifeng, China
| |
Collapse
|
9
|
Wang N, Bai X, Huang D, Shao M, Chen Q, Xu Q. Insights into the influence of digestate-derived biochar upon the microbial community succession during the composting of digestate from food waste. CHEMOSPHERE 2023; 316:137786. [PMID: 36634716 DOI: 10.1016/j.chemosphere.2023.137786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The by-product from the anaerobic digestion of food waste (FW) called the digestate (DFW) needs proper disposal because of its high environmental burden. Composting can transform DFW into a nutrient-containing soil improver via a series of microbial metabolic activities. However, the long composting time and high amount of ammonia emission are the key concerns of DFW composting. In the present study, the effect of DFW-derived biochar (BC-DFW) on microbial succession and its involvement in nitrogen transformation and humification during DFW composting were investigated. The results indicated that the BC-DFW accelerated bacterial and fungal evolution, and the bacterial diversity was augmented by increasing the amount of BC-DFW. In particular, Cryomorpha, Castellaniella, Aequorivita, and Moheibacter were enriched by the addition of BC-DFW, thereby enhancing the degradation of organic matter and nitrogen transformation and increasing the germination index. The group with 25% BC-DFW contained a higher relative abundance of Cryomorpha (2.08%, 2.47%) than the control (0.39%, 1.72%) on days 19 and 35 which benefited the degradation of organic matter. The group with 25% BC-DFW quickly enhanced the growth of Nitrosomonas, thereby accelerating the conversion of ammonium-nitrogen to nitrate-nitrogen and reducing the phytotoxicity of the composting product.
Collapse
Affiliation(s)
- Ning Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life and Sciences, Hainan Normal University, Haikou, Hainan Province, 571158, PR China; Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Dandan Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Díaz-Vázquez D, Garibay MV, Fernández del Castillo A, Orozco-Nunnelly DA, Senés-Guerrero C, Gradilla-Hernández MS. Yeast community composition impacts on tequila industry waste treatment for pollution control and waste-to-product synthesis. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tequila industry is a major producer of wastewater in the state of Jalisco, Mexico. Tequila vinasses (TV) are a residue from the distillation of fermented agave wort during tequila production. TV are difficult to treat due their high organic content, high nutrient loads, acidic pH and high discharge temperature. TV are frequently released into waterbodies or soil without any treatment, leading to environmental degradation of soil and water sources. To reduce the environmental impact of the tequila industry, cost-effective TV revalorization approaches must be developed. The goals of the present study were to assess the treatment and revalorization potential of TV using mono and mixed yeast cultures to produce single-cell protein (SCP) and to analyze yeast community composition using high-throughput sequencing during the mixed-culture fermentation of TV. The fermentation process was performed using a mixed culture of three fodder yeast species (Candida utilis, Rhodotorula mucilaginosa and Kluyveromyces marxianus) during 48 h at benchtop-scale. High-throughput sequencing was performed to assess the relative abundance of the yeast communities. Additionally, a redundancy analysis was performed to analyze the bidirectional influence between yeast communities and pollutant removal (COD, nitrogen, phosphorus, proteins, and sugars). Mixed yeast cultures displayed overall higher pollutant removal rates than monocultures, where C. utilis and K. marxianus contributed the most to pollutant removal and protein accumulation. The R. mucilaginosa population declined rapidly in mixed culture, presumably due to TV acidity and phenolic composition. However, the presence of The R. mucilaginosa in the mixed culture enhanced pollutant removal and amino acid contents. Accordingly, the protein and amino acid content within mixed cultures were significantly higher than those of monocultures, indicating that mixed cultures have a strong potential to produce protein rich biomass from TV, aiding in the transition of both the tequila and the livestock industries to a sustainable circular bioeconomy model by the reintegration of organic material flows into productive processes, reducing raw resource intake and waste generation. The present circular bioeconomy approach could represent a potential to produce 45,664 tons of protein feed yearly, based on the current tequila vinasses generated in the state of Jalisco.
Collapse
|
11
|
Zhao D, Liu H, Zhang H, Liu K, Zhang X, Liu Q, Wu Y, Zhang T, Zhang Q. Dietary supplementation with Cyberlindnera jadinii improved growth performance, serum biochemical Indices, antioxidant status, and intestinal health in growing raccoon dogs (Nyctereutes procyonoides). Front Microbiol 2022; 13:973384. [PMID: 36212816 PMCID: PMC9532689 DOI: 10.3389/fmicb.2022.973384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate whether different dietary Cyberlindnera jadinii levels affect growth performance, serum immunity, antioxidant capacity, and intestinal microbiota in growing raccoon dogs. Forty-five healthy male raccoon dogs were randomly assigned to three treatment groups, with 15 raccoon dogs per group. Each raccoon dog was housed in an individual cage. The raccoon dogs in the three groups were fed diets supplemented with Cyberlindnera jadinii at dosages of 0 (N group), 1 × 109 (L group) and 5 × 109 CFU/g (H group). A 7-day pretest period preceded a formal test period of 30 days. The results showed that Cyberlindnera jadinii in the L and H groups improved average daily gain (ADG) (P < 0.05) and decreased the ratio of feed to weight (F/G) (P < 0.05). Serum immunoglobulins A and G levels were increased in the L and H groups compared to the N group (P < 0.05). Cyberlindnera jadinii in the L and H groups increased serum superoxide dismutase activity (P < 0.05), and serum glutathione peroxidase activity was increased in the L group compared to the N group (P < 0.05). The relative abundance of Firmicutes and Actinobacteriota were increased, and the relative abundance of Bacteroidota was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Proteobacteria and Cyanobacteria was increased in the H group compared to the other two groups (P < 0.05). The ratio of Firmicutes to Bacteroidetes in the Cyberlindnera jadinii supplementation groups increased compared with the N group (P < 0.05). The relative abundance of Megasphaera and Bifidobacterium were increased, and the relative abundance of Prevotella was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Dialister was increased, while the relative abundance of Blautia was decreased in the H group compared to the other two groups (P < 0.05). The relative abundance of Agathobacter was decreased in the H group compared to the N group (P < 0.05). In conclusion, dietary supplementation with Cyberlindnera jadinii increased growth performance, serum immunity, antioxidant capacity, and improved intestinal microbiota in growing raccoon dogs. Cyberlindnera jadinii can therefore be used as a growth promoter in raccoon dogs.
Collapse
|
12
|
Sousa-Silva M, Soares P, Alves J, Vieira D, Casal M, Soares-Silva I. Uncovering Novel Plasma Membrane Carboxylate Transporters in the Yeast Cyberlindnera jadinii. J Fungi (Basel) 2022; 8:51. [PMID: 35049991 PMCID: PMC8779868 DOI: 10.3390/jof8010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022] Open
Abstract
The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in Saccharomyces cerevisiae. The newly identified C. jadinii transporters present specificity for mono-, di-, and tricarboxylates. The transporters CjAto5, CjJen6, CjSlc5, and CjSlc13-1 display the broadest substrate specificity; CjAto2 accepts mono- and dicarboxylates; and CjAto1,3,4, CjJen1-5, CjSlc16, and CjSlc13-2 are specific for monocarboxylic acids. A detailed characterization of these transporters, including phylogenetic reconstruction, 3D structure prediction, and molecular docking analysis is presented here. The properties presented by these transporters make them interesting targets to be explored as organic acid exporters in microbial cell factories.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - João Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Binati RL, Salvetti E, Bzducha-Wróbel A, Bašinskienė L, Čižeikienė D, Bolzonella D, Felis GE. Non-conventional yeasts for food and additives production in a circular economy perspective. FEMS Yeast Res 2021; 21:6380488. [PMID: 34601574 DOI: 10.1093/femsyr/foab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Yeast species have been spontaneously participating in food production for millennia, but the scope of applications was greatly expanded since their key role in beer and wine fermentations was clearly acknowledged. The workhorse for industry and scientific research has always been Saccharomyces cerevisiae. It occupies the largest share of the dynamic yeast market, that could further increase thanks to the better exploitation of other yeast species. Food-related 'non-conventional' yeasts (NCY) represent a treasure trove for bioprospecting, with their huge untapped potential related to a great diversity of metabolic capabilities linked to niche adaptations. They are at the crossroad of bioprocesses and biorefineries, characterized by low biosafety risk and produce food and additives, being also able to contribute to production of building blocks and energy recovered from the generated waste and by-products. Considering that the usual pattern for bioprocess development focuses on single strains or species, in this review we suggest that bioprospecting at the genus level could be very promising. Candida, Starmerella, Kluyveromyces and Lachancea were briefly reviewed as case studies, showing that a taxonomy- and genome-based rationale could open multiple possibilities to unlock the biotechnological potential of NCY bioresources.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Loreta Bašinskienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - Dalia Čižeikienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| |
Collapse
|
14
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|