1
|
Hu Z, Chen C, Zheng X, Yuan J, Zou R, Xie C. Establishing Gene Expression and Knockout Methods in Esteya vermicola CBS115803. Mol Biotechnol 2024; 66:2872-2881. [PMID: 37777998 DOI: 10.1007/s12033-023-00898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Pine wilt disease, which is caused by the nematode Bursaphelenchus xylophilus, is one of the most destructive forest diseases worldwide. Esteya vermicola, a nematophagous fungus, has emerged as a promising biological control agent. However, the limited availability of gene function analysis techniques hinders further genetic modification of this fungus. In this study, we employed a combination of enzymes (driselase, snailase, and cellulase) to enzymatically degrade the cell wall of the fungus, resulting in a high yield of protoplasts. Furthermore, by utilizing 0.6 M sucrose as an osmotic pressure stabilizer, we achieved a significant protoplast regeneration rate of approximately 31%. Subsequently, we employed the polyethylene glycol-mediated protoplast transformation method to successfully establish a genetic transformation technique for E. vermicola CBS115803. Additionally, through our investigation, we identified the Olic promoter from Aspergillus nidulans, which effectively enhanced the expression of the DsRed gene encoding a red fluorescent protein in E. vermicola CBS115803. Moreover, we successfully implemented a split-marker strategy to delete the EvIPMD gene in E. vermicola CBS115803. In summary, our findings present valuable experimental methodologies for gene function analysis in E. vermicola CBS115803.
Collapse
Affiliation(s)
- Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chi Chen
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Xinyao Zheng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Jingjie Yuan
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Run Zou
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing, 401331, China.
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Wang ZQ, Zhao J, Dong QY, Wang Y, Lu YL, Luo R, Yu H. Multi-locus molecular phylogenetic analysis reveals two new species of Amphichorda (Bionectriaceae, Hypocreales). MycoKeys 2024; 106:287-301. [PMID: 38993356 PMCID: PMC11237567 DOI: 10.3897/mycokeys.106.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Amphichorda has been previously accepted as a member of the Cordycipitaceae and currently it is considered a member of the Bionectriaceae. The substrates of Amphichorda were complex and varied, being mainly animal faeces. This study reports two new species of Amphichorda from Yunnan Province in south-western China. Based on the five-gene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence and ITS data phylogenetic analysis, two new species, namely A.excrementa and A.kunmingensis, are proposed and a detailed description of the new species is provided. Amphichordaexcrementa and A.kunmingensis were isolated from animal faeces in the park. The morphological characteristics of two novel species and seven known species in Amphichorda are also compared.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Jing Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Quan-Ying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Ying-Ling Lu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Run Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
3
|
Cai R, Xiao Y, Xing J, Yu K, Li X, Chai Y. Establishment of a genetic transformation system for cordycipitoid fungus Cordyceps chanhua. Front Microbiol 2024; 15:1333793. [PMID: 38993492 PMCID: PMC11236535 DOI: 10.3389/fmicb.2024.1333793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
Cordyceps chanhua is a well-known edible and medicinal mushroom with a long history of use in China, and it contains a variety of secondary metabolites with interesting bioactive ingredients. However, recent researches have mainly focused on cultivation conditions, secondary metabolite compositions and pharmacological activities of C. chanhua, the lack of an efficient and stable genetic transformation system has largely limited further research on the relationship between secondary metabolites and biosynthetic gene clusters in C. chanhua. In this study, single-factor experiments were used to compare the effects of different osmotic stabilizers, enzyme concentrations and enzyme digestion times on protoplast yield, and we found that the highest yield of 5.53 × 108 protoplasts/mL was obtained with 0.7 M mannitol, 6 mg/mL snail enzyme and 4 h of enzyme digestion time, and the regeneration rate of protoplasts was up to approximately 30% using 0.7 M mannitol as an osmotic stabilizer. On this basis, a PEG-mediated genetic transformation system of C. chanhua was successfully established for the first time, which lays the foundation for further genetic transformation of C. chanhua.
Collapse
Affiliation(s)
- Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yu Xiao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajia Xing
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Kongjian Yu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaola Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yiqiu Chai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
4
|
Leão AF, Condé TO, Dutra YLG, Rosado AWC, Grazziotti PH, de Carvalho Neves S, Fraga LMS, Kasuya MCM, Pereira OL. Amphichorda monjolensis sp. nov., a new fungal species isolated from a Brazilian limestone cave, with an update on acremonium-like species in Bionectriaceae. Braz J Microbiol 2024; 55:1569-1585. [PMID: 38462595 PMCID: PMC11153450 DOI: 10.1007/s42770-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Caves are unique environments characterized by spatial limitations, partial or total absence of direct light, and scarcity of organic carbon and nutrients. Caves are shelters for a variety of adapted animals and microorganisms such as fungi, many of which are still unknown. Amphichorda is a fungal genus belonging to the family Bionectriaceae, which includes cave-dwelling and entomopathogenic species with biotechnological applications. In this study, a new fungal species was identified using morphological and multi-locus phylogenetic analyses of the ITS, LSU, and TEF loci, in the Gruta Velha Nova limestone cave located in the Southern Espinhaço Range, Monjolos, Minas Gerais, Brazil. During the exposure of potato dextrose agar plates to the cave environment, an insect from the family Rhaphidophoridae passed by and fed on the culture medium, resulting in three fungal isolates. Phylogenetic analyses showed that these isolates formed a clade distinct from all known species, leading us to introduce a new species, Amphichorda monjolensis, which may be associated with this insect. Here, we also proposed two new combinations for species of acremonium-like fungi in the Bionectriaceae: Bulbithecium globosisporum (synonym: Acremonium globosisporum) and Hapsidospora curva (synonym: Acremonium curvum). The discovery of A. monjolensis highlights the potential of caves as shelters for new species with significant biotechnological importance.
Collapse
Affiliation(s)
- Ana Flávia Leão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thiago Oliveira Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Yan Lucas Gomes Dutra
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Paulo Henrique Grazziotti
- Departamento de Engenharia Florestal, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Soraya de Carvalho Neves
- Instituto de Ciência E Tecnologia, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Lucio Mauro Soares Fraga
- Instituto de Ciência E Tecnologia, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | | | - Olinto Liparini Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
5
|
Abah F, Kuang Y, Biregeya J, Abubakar YS, Ye Z, Wang Z. Mitogen-Activated Protein Kinases SvPmk1 and SvMps1 Are Critical for Abiotic Stress Resistance, Development and Pathogenesis of Sclerotiophoma versabilis. J Fungi (Basel) 2023; 9:455. [PMID: 37108909 PMCID: PMC10142639 DOI: 10.3390/jof9040455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are evolutionarily conserved in eukaryotes and modulate responses to both internal and external stimuli. Pmk1 and Mps MAPK pathways regulate stress tolerance, vegetative growth and cell wall integrity in Saccharomyces cerevisiae and Pyricularia oryzae. Here, we deployed genetic and cell biology strategies to investigate the roles of the orthologs of Pmk1 and Mps1 in Sclerotiophoma versabilis (herein referred to as SvPmk1 and SvMps1, respectively). Our results showed that SvPmk1 and SvMps1 are involved in hyphal development, asexual reproduction and pathogenesis in S. versabilis. We found that ∆Svpmk1 and ∆Svmps1 mutants have significantly reduced vegetative growths on PDA supplemented with osmotic stress-inducing agents, compared to the wild type, with ∆Svpmps1 being hypersensitive to hydrogen peroxide. The two mutants failed to produce pycnidia and have reduced pathogenicity on Pseudostellaria heterophylla. Unlike SvPmk1, SvMps1 was found to be indispensable for the fungal cell wall integrity. Confocal microscopic analyses revealed that SvPmk1 and SvMps1 are ubiquitously expressed in the cytosol and nucleus. Taken together, we demonstrate here that SvPmk1 and SvMps1 play critical roles in the stress resistance, development and pathogenesis of S. versabilis.
Collapse
Affiliation(s)
- Felix Abah
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Kuang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Jules Biregeya
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuyun Ye
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
6
|
Development of the CRISPR-Cas9 System for the Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2022; 8:jof8070715. [PMID: 35887470 PMCID: PMC9322911 DOI: 10.3390/jof8070715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Marine-derived fungi are emerging as attractive producers of structurally novel secondary metabolites with diverse bioactivities. However, the lack of efficient genetic tools limits the discovery of novel compounds and the elucidation of biosynthesis mechanisms. Here, we firstly established an effective PEG-mediated chemical transformation system for protoplasts in two marine-derived fungi, Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. Next, we developed a simple and versatile CRISPR-Cas9-based gene disruption strategy by transforming a target fungus with a single plasmid. We found that the transformation with a circular plasmid encoding cas9, a single-guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted and insertional gene mutations in both marine-derived fungal strains. In addition, the histone deacetylase gene rpd3 was mutated using the established CRISPR-Cas9 system, thereby activating novel secondary metabolites that were not produced in the wild-type strain. Taken together, a versatile CRISPR-Cas9-based gene disruption method was established, which will promote the discovery of novel natural products and further biological studies.
Collapse
|
7
|
Ning Y, Hu B, Yu H, Liu X, Jiao B, Lu X. Optimization of Protoplast Preparation and Establishment of Genetic Transformation System of an Arctic-Derived Fungus Eutypella sp. Front Microbiol 2022; 13:769008. [PMID: 35464961 PMCID: PMC9019751 DOI: 10.3389/fmicb.2022.769008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Arctic-derived fungus Eutypella sp. D-1 has attracted wide attention due to its huge ability to synthesize secondary metabolites. However, current studies only focus on stimulating its production of new secondary metabolites by OSMAC strategies, and the relationship between secondary metabolites and biosynthetic gene clusters (BGCs) has not been explored. In this study, the preparation and regeneration conditions of Eutypella sp. D-1 protoplasts were explored to lay a foundation for the study of genetic transformation of this fungus. Orthogonal experiment showed that the optimal preparation conditions were 0.75 M NaCl, 20 g/L of lysing enzyme, and 20 g/L of driselase, 28°C for 6 h. The maximum yield of Eutypella sp. D-1 protoplasts could reach 6.15 × 106 cells·ml−1, and the concentration of osmotic stabilizer NaCl was the most important factor for Eutypella sp. D-1 protoplasts. The results of FDA staining showed that the prepared protoplasts had good activity. Besides, the best protoplasts regeneration medium was YEPS, whose maximum regeneration rate is 36%. The mediums with nitrogen sources, such as SR and RM, also had good effects on the Eutypella sp. D-1 protoplast regeneration, indicating that nitrogen sources played an important role on the Eutypella sp. D-1 protoplast regeneration. Subsequent transformation experiments showed that hygromycin resistance genes (hrg) could be successfully transferred into the genome of Eutypella sp. D-1, indicating that the prepared protoplasts could meet the needs of subsequent gene manipulation and research. This study lays a foundation for the genetic transformation of Eutypella sp. D-1.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Haobing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Xiaoyu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Zhang Q, Zhao L, Shen M, Liu J, Li Y, Xu S, Chen L, Shi G, Ding Z. Establishment of an Efficient Polyethylene Glycol (PEG)-Mediated Transformation System in Pleurotus eryngii var. ferulae Using Comprehensive Optimization and Multiple Endogenous Promoters. J Fungi (Basel) 2022; 8:jof8020186. [PMID: 35205941 PMCID: PMC8876744 DOI: 10.3390/jof8020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Pleurotus eryngii var. ferulae, a fungus of the genus Pleurotus, efficiently degrades lignin, especially during co-cultivation with other fungi. However, low transformation efficiency and heterologous gene expression restrict systematic studies of the molecular mechanisms and metabolic control of natural products in this mushroom. In this study, the homologous resistance marker carboxin (cbx) was used to establish a polyethylene glycol-mediated transformation (PMT) system in P. eryngii var. ferulae. Optimization of the transformation process greatly improved the number of positive transformants. In particular, we optimized: (i) protoplast preparation and regeneration; (ii) screening methods; and (iii) transformation-promoting factors. The optimized transformation efficiency reached 72.7 CFU/μg, which is higher than the average level of Pleurotus sp. (10–40 CFU/μg). Moreover, three endogenous promoters (Ppfgpd1, Ppfgpd2, and Ppfsar1) were screened and evaluated for different transcription initiation characteristics. A controllable overexpression system was established using these three promoters that satisfied various heterologous gene expression requirements, such as strong or weak, varied, or stable expression levels. This study lays the foundation for recombinant protein expression in P. eryngii var. ferulae and provides a method to investigate the underlying molecular mechanisms and secondary metabolic pathway modifications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengye Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jingyun Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (M.S.); (J.L.); (L.C.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (Y.L.); (S.X.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-511-85918221
| |
Collapse
|