1
|
Li N, Zhang R, Zhou J, Huang Z. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7961-7976. [PMID: 37192316 DOI: 10.1021/acs.jafc.3c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The complete degradation of abundant xylan derived from plants requires the participation of β-xylosidases to produce the xylose which can be converted to xylitol, ethanol, and other valuable chemicals. Some phytochemicals can also be hydrolyzed by β-xylosidases into bioactive substances, such as ginsenosides, 10-deacetyltaxol, cycloastragenol, and anthocyanidins. On the contrary, some hydroxyl-containing substances such as alcohols, sugars, and phenols can be xylosylated by β-xylosidases into new chemicals such as alkyl xylosides, oligosaccharides, and xylosylated phenols. Thus, β-xylosidases shows great application prospects in food, brewing, and pharmaceutical industries. This review focuses on the molecular structures, biochemical properties, and bioactive substance transformation function of β-xylosidases derived from bacteria, fungi, actinomycetes, and metagenomes. The molecular mechanisms of β-xylosidases related to the properties and functions are also discussed. This review will serve as a reference for the engineering and application of β-xylosidases in food, brewing, and pharmaceutical industries.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
The differences in carbohydrate utilization ability between six rounds of Sauce-flavor Daqu. Food Res Int 2023; 163:112184. [PMID: 36596124 DOI: 10.1016/j.foodres.2022.112184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Sauce-flavor Daqu is an important source of fermentation power in baijiu brewing. Revealing carbohydrate metabolism will help to explore the underlying reasons for the difference in fermentation performance of Daqu. In this study, metagenomic and metaproteomic technologies were performed to explore the carbohydrate metabolism network and its active functional microorganisms of Sauce-flavor Daqu. The sugar profile was analyzed using LC-MS to confirm the metabolic network. The results showed that 23 fungi and 5 bacteria were involved in carbohydrate metabolism. Starch metabolism, cellulose metabolism, and glucan metabolism were the main metabolic pathways, in which fungi especially Aspergillus were more involved than bacteria. Among these active microorganisms, Saccharomycopsis fibuligera, Aspergillus oryzae, Monascus purpureus, Byssochlamys spectabilis, Lichtheimia ramosa, Thermomyces lanuginosus, and Thermoascus aurantiacus were significant functional microorganisms with the ability to produce multiple enzymes. Lichtheimia ramosa, Lichtheimia corymbifera and Kroppenstedtia eburnea were biomarkers of Daqu in the first round, granting it a better liquefaction ability. β-amylase derived from wheat also played an important role in starch degradation, and the synergistic effect with α-amylase endowed Daqu with higher liquefaction power in the first two rounds. The results of this study are of great significance for the analysis of the mechanism of Daqu fermentation and provide a reliable theoretical basis for strengthening the fermentation performance of Daqu.
Collapse
|
3
|
Glekas PD, Kalantzi S, Dalios A, Hatzinikolaou DG, Mamma D. Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis. Biomolecules 2022; 12:biom12060790. [PMID: 35740915 PMCID: PMC9221164 DOI: 10.3390/biom12060790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Xylanases have a broad range of applications in agro-industrial processes. In this study, we report on the discovery and characterization of a new thermotolerant GH10 xylanase from Bacillus safensis, designated as BsXyn10. The xylanase gene (bsxyn10) was cloned from Bacillus safensis and expressed in Escherichia coli. The reduced molecular mass of BsXyn10 was 48 kDa upon SDS-PAGE. Bsxyn10 was optimally active at pH 7.0 and 60 °C, stable over a broad range of pH (5.0–8.0), and also revealed tolerance toward different modulators (metal cations, EDTA). The enzyme was active toward various xylans with no activity on the glucose-based polysaccharides. KM, vmax, and kcat for oat spelt xylan hydrolysis were found to be 1.96 g·L−1, 58.6 μmole·min−1·(mg protein)−1, and 49 s−1, respectively. Thermodynamic parameters for oat spelt xylan hydrolysis at 60 °C were ΔS* = −61.9 J·mol−1·K−1, ΔH* = 37.0 kJ·mol−1 and ΔG* = 57.6 kJ·mol−1. BsXyn10 retained high levels of activity at temperatures up to 60 °C. The thermodynamic parameters (ΔH*D, ΔG*D, ΔS*D) for the thermal deactivation of BsXyn10 at a temperature range of 40–80 °C were: 192.5 ≤ ΔH*D ≤ 192.8 kJ·mol−1, 262.1 ≤ ΔS*D ≤ 265.8 J·mol−1·K−1, and 99.9 ≤ ΔG*D ≤ 109.6 kJ·mol−1. The BsXyn10-treated oat spelt xylan manifested the catalytic release of xylooligosaccharides of 2–6 DP, suggesting that BsXyn10 represents a promising candidate biocatalyst appropriate for several biotechnological applications.
Collapse
Affiliation(s)
- Panayiotis D. Glekas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Anargiros Dalios
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Correspondence: (D.G.H.); (D.M.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
- Correspondence: (D.G.H.); (D.M.)
| |
Collapse
|
4
|
Lu T, Yang Y, Feng WJ, Jin QC, Wu ZG, Jin ZH. Effect of the compound bacterial agent on microbial community of the aerobic compost of food waste. Lett Appl Microbiol 2021; 74:32-43. [PMID: 34608649 DOI: 10.1111/lam.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
In our study, we used 16SrRNA and ITS to investigate the microbial community composition and the effect of compound bacterial agent on the microbial community composition in the aerobic composting process of food waste (FW). At the bacterial level, the main phyla of Group A (compost naturally) were Proteobacteria and Firmicutes, and the main species were Pseudomonas_sp._GR7, Bacillus licheniformis and Pediococcus acidilactici. The main phyla of Group B (compost with compound bacterial agent) were Proteobacteria, Firmicutes and Streptophyta, and the main species were Klebsiella pneumoniae, Cronobacter sakazakii, Macrococcus caseolyticus, Enterococcus faecalis, Citrobacter freundii and Bacillus velezensis. It is worth noting that M. caseolyticus may be able to improve the effect of odour which is an important sensory index during aerobic composting. At the fungal level, the main phylum of both Groups A and B was Ascomycota, and the main species of Group A were Paecilomyces variotii, Byssochlamys spectabilis and Aspergillus fumigatus. The main species of Group B were Ogataea polymorpha and Millerozyma farinosa. Finally, the degradation rate of Group B was 81% that was about 15% higher than that of Group A, indicating that the compound bacterial agent could effectively improve the degradation rate and the composting process, while the low abundance of the compound bacterial agent in the composting process might be due to the small initial addition or the inhibition of other bacteria or fungi in the composting process.
Collapse
Affiliation(s)
- T Lu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Y Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - W J Feng
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Q C Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z G Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z H Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| |
Collapse
|