1
|
Shah S, Lai J, Basuli F, Martinez-Orengo N, Patel R, Turner ML, Wang B, Shi ZD, Sourabh S, Peiravi M, Lyndaker A, Liu S, Seyedmousavi S, Williamson PR, Swenson RE, Hammoud DA. Development and preclinical validation of 2-deoxy 2-[ 18F]fluorocellobiose as an Aspergillus-specific PET tracer. Sci Transl Med 2024; 16:eadl5934. [PMID: 39141701 DOI: 10.1126/scitranslmed.adl5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of β-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Reema Patel
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Suman Sourabh
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Morteza Peiravi
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Sichen Liu
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20852, USA
| | | | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20852, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| |
Collapse
|
2
|
Lakshminarayanan K, Murugan D, Venkatesan J, Vasanthakumari Thirumalaiswamy H, Gadais C, Rangasamy L. Siderophore-Conjugated Antifungals: A Strategy to Potentially Cure Fungal Infections. ACS Infect Dis 2024; 10:2448-2466. [PMID: 38905481 DOI: 10.1021/acsinfecdis.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Fungi pose a global threat to humankind due to the increasing emergence of multi-drug-resistant fungi. There is a rising incidence of invasive fungal infections. Due to the structural complexity of fungal cell membranes, only a few classes of antifungal agents are effective and have been approved by the U.S. FDA. Hence, researchers globally are focusing on developing novel strategies to cure fungal infections. One of the potential strategies is the "Trojan horse" approach, which uses the siderophore-mediated iron acquisition (SIA) system to scavenge iron to deliver potent antifungal agents for therapeutics and diagnostics. These siderophore conjugates chelate to iron and are taken up through siderophore-iron transporters, which are overexpressed exclusively on microbes such as bacteria or fungi, but not mammalian cells. Our comprehensive review delves into recent advancements in the design of siderophore-conjugated antifungal agents to gain fungal cell entry. Notably, our focus extends to unraveling the intricate relationship between the structure of natural siderophores or siderophore-like molecules and the resulting antifungal activity. By exploring these design strategies, we aim to contribute to the ongoing discourse on combating drug-resistant fungal infections and advancing the landscape of antifungal theranostics.
Collapse
Affiliation(s)
- Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Charlène Gadais
- ISCR UMR 6226 (Institute of Chemical Sciences of Rennes), Faculty of Pharmacy, University of Rennes, 35042 Rennes cedex, France
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
3
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
4
|
Lai J, Wang B, Petrik M, Beziere N, Hammoud DA. Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future. J Infect Dis 2023; 228:S259-S269. [PMID: 37788500 PMCID: PMC10547453 DOI: 10.1093/infdis/jiad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.
Collapse
Affiliation(s)
- Jianhao Lai
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Milos Petrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem 2023; 67:829-842. [PMID: 37313590 PMCID: PMC10500206 DOI: 10.1042/ebc20220252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.
Collapse
Affiliation(s)
- Isidor Happacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Xie F, Hao Y, Li L, Wang R, Bao J, Chi X, Monk BC, Wang T, Yu S, Jin Y, Zhang D, Ni T, Yan L. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. Eur J Med Chem 2023; 257:115506. [PMID: 37216811 DOI: 10.1016/j.ejmech.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 μg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 μg/mL of 16, 18, and 29 was more effective than 2 μg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 μg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 μg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
7
|
Peukert C, Rox K, Karge B, Hotop SK, Brönstrup M. Synthesis and Characterization of DOTAM-Based Sideromycins for Bacterial Imaging and Antimicrobial Therapy. ACS Infect Dis 2023; 9:330-341. [PMID: 36719860 PMCID: PMC9927285 DOI: 10.1021/acsinfecdis.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 02/01/2023]
Abstract
The rise of antimicrobial resistance, especially in Gram-negative bacteria, calls for novel diagnostics and antibiotics. To efficiently penetrate their double-layered cell membrane, we conjugated the potent antibiotics daptomycin, vancomycin, and sorangicin A to catechol siderophores, which are actively internalized by the bacterial iron uptake machinery. LC-MS/MS uptake measurements of sorangicin derivatives verified that the conjugation led to a 100- to 525-fold enhanced uptake into bacteria compared to the free drug. However, the transfer to the cytosol was insufficient, which explains their lack of antibiotic efficacy. Potent antimicrobial effects were observed for the daptomycin conjugate 7 (∼1 μM) against multidrug-resistant Acinetobacter baumannii. A cyanin-7 label aside the daptomycin warhead furnished the theranostic 13 that retained its antibiotic activity and was also able to label ESKAPE bacteria, as demonstrated by microscopy and fluorescence assays. 13 and the cyanin-7 imaging conjugate 14 were stable in human plasma and had low plasma protein binding and cytotoxicity.
Collapse
Affiliation(s)
- Carsten Peukert
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Bianka Karge
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
| | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research, Inhoffenstraße 7, 38124Braunschweig, Germany
- Institute
for Organic Chemistry (IOC), Leibniz Universität
Hannover, Schneiderberg
1B, 30167Hannover, Germany
- German
Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124Braunschweig, Germany
| |
Collapse
|
8
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastré-Velásquez LE, Gsaller F, Decristoforo C, Osherov N, Haas H. Uptake of the Siderophore Triacetylfusarinine C, but Not Fusarinine C, Is Crucial for Virulence of Aspergillus fumigatus. mBio 2022; 13:e0219222. [PMID: 36125294 PMCID: PMC9600649 DOI: 10.1128/mbio.02192-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Siderophores play an important role in fungal virulence, serving as trackers for in vivo imaging and as biomarkers of fungal infections. However, siderophore uptake is only partially characterized. As the major cause of aspergillosis, Aspergillus fumigatus is one of the most common airborne fungal pathogens of humans. Here, we demonstrate that this mold species mediates the uptake of iron chelated by the secreted siderophores triacetylfusarinine C (TAFC) and fusarinine C by the major facilitator-type transporters MirB and MirD, respectively. In a murine aspergillosis model, MirB but not MirD was found to be crucial for virulence, indicating that TAFC-mediated uptake plays a dominant role during infection. In the absence of MirB, TAFC becomes inhibitory by decreasing iron availability because the mutant is not able to recognize iron that is chelated by TAFC. MirB-mediated transport was found to tolerate the conjugation of fluorescein isothiocyanate to triacetylfusarinine C, which might aid in the development of siderophore-based antifungals in a Trojan horse approach, particularly as the role of MirB in pathogenicity restrains its mutational inactivation. Taken together, this study identified the first eukaryotic siderophore transporter that is crucial for virulence and elucidated its translational potential as well as its evolutionary conservation. IMPORTANCE Aspergillus fumigatus is responsible for thousands of cases of invasive fungal disease annually. For iron uptake, A. fumigatus secretes so-called siderophores, which are taken up after the binding of environmental iron. Moreover, A. fumigatus can utilize siderophore types that are produced by other fungi or bacteria. Fungal siderophores raised considerable interest due to their role in virulence and their potential for the diagnosis and treatment of fungal infections. Here, we demonstrate that the siderophore transporter MirB is crucial for the virulence of A. fumigatus, which reveals that its substrate, triacetylfusarinine C, is the most important siderophore during infection. We found that in the absence of MirB, TAFC becomes inhibitory by decreasing the availability of environmental iron and that MirB-mediated transport tolerates the derivatization of its substrate, which might aid in the development of siderophore-based antifungals. This study significantly improved the understanding of fungal iron homeostasis and the role of siderophores in interactions with the host.
Collapse
Affiliation(s)
- Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Aguiar M, Orasch T, Misslinger M, Dietl AM, Gsaller F, Haas H. The Siderophore Transporters Sit1 and Sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-Type Siderophores in Aspergillus fumigatus. J Fungi (Basel) 2021; 7:768. [PMID: 34575806 PMCID: PMC8470733 DOI: 10.3390/jof7090768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Siderophore-mediated acquisition of iron has been shown to be indispensable for the virulence of several fungal pathogens, the siderophore transporter Sit1 was found to mediate uptake of the novel antifungal drug VL-2397, and siderophores were shown to be useful as biomarkers as well as for imaging of fungal infections. However, siderophore uptake in filamentous fungi is poorly characterized. The opportunistic human pathogen Aspergillus fumigatus possesses five putative siderophore transporters. Here, we demonstrate that the siderophore transporters Sit1 and Sit2 have overlapping, as well as unique, substrate specificities. With respect to ferrichrome-type siderophores, the utilization of ferrirhodin and ferrirubin depended exclusively on Sit2, use of ferrichrome A depended mainly on Sit1, and utilization of ferrichrome, ferricrocin, and ferrichrysin was mediated by both transporters. Moreover, both Sit1 and Sit2 mediated use of the coprogen-type siderophores coprogen and coprogen B, while only Sit1 transported the bacterial ferrioxamine-type xenosiderophores ferrioxamines B, G, and E. Neither Sit1 nor Sit2 were important for the utilization of the endogenous siderophores fusarinine C and triacetylfusarinine C. Furthermore, A. fumigatus was found to lack utilization of the xenosiderophores schizokinen, basidiochrome, rhizoferrin, ornibactin, rhodotorulic acid, and enterobactin. Taken together, this study characterized siderophore use by A. fumigatus and substrate characteristics of Sit1 and Sit2.
Collapse
Affiliation(s)
| | | | | | | | | | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.A.); (T.O.); (M.M.); (A.-M.D.); (F.G.)
| |
Collapse
|
12
|
Misslinger M, Petrik M, Pfister J, Hubmann I, Bendova K, Decristoforo C, Haas H. Desferrioxamine B-Mediated Pre-Clinical In Vivo Imaging of Infection by the Mold Fungus Aspergillus fumigatus. J Fungi (Basel) 2021; 7:734. [PMID: 34575772 PMCID: PMC8472378 DOI: 10.3390/jof7090734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal infections are a serious threat, especially for immunocompromised patients. Early and reliable diagnosis is crucial to treat such infections. The bacterially produced siderophore desferrioxamine B (DFO-B) is utilized by a variety of microorganisms for iron acquisition, while mammalian cells lack the uptake of DFO-B chelates. DFO-B is clinically approved for a variety of long-term chelation therapies. Recently, DFO-B-complexed gallium-68 ([68Ga]Ga-DFO-B) was shown to enable molecular imaging of bacterial infections by positron emission tomography (PET). Here, we demonstrate that [68Ga]Ga-DFO-B can also be used for the preclinical molecular imaging of pulmonary infection caused by the fungal pathogen Aspergillus fumigatus in a rat aspergillosis model. Moreover, by combining in vitro uptake studies and the chemical modification of DFO-B, we show that the cellular transport efficacy of ferrioxamine-type siderophores is impacted by the charge of the molecule and, consequently, the environmental pH. The chemical derivatization has potential implications for its diagnostic use and characterizes transport features of ferrioxamine-type siderophores.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (M.P.); (K.B.)
| | - Joachim Pfister
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.P.); (I.H.)
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.P.); (I.H.)
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (M.P.); (K.B.)
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.P.); (I.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|