1
|
Guha S, Cristy SA, Buda De Cesare G, Cruz MR, Lorenz MC, Garsin DA. Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis. mBio 2024; 15:e0057024. [PMID: 38587425 PMCID: PMC11077972 DOI: 10.1128/mbio.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shane A. Cristy
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Adelakun AO, Awosika A, Adabanya U, Omole AE, Olopoda AI, Bello ET. Antimicrobial and Synergistic Effects of Syzygium cumini, Moringa oleifera, and Tinospora cordifolia Against Different Candida Infections. Cureus 2024; 16:e52857. [PMID: 38274587 PMCID: PMC10808863 DOI: 10.7759/cureus.52857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Introduction The burden of multiple drug resistance in human pathogens has necessitated the search for and development of antimicrobial agents with a wide range of structural classes and potentials to selectively act on the several mechanisms of actions exhibited by the pathogens. However, most synthetic antimicrobial agents have been linked with adverse side effects and high costs, furthering the need to explore more options. Syzygium cumini, Moringa oleifera, and Tinospora cordifolia are three medicinal plants used in traditional medicine systems for various infectious diseases. They contain various phytochemicals that exhibit antimicrobial activities against various bacteria, fungi, and parasites. The mechanisms of their antimicrobial action may involve the disruption of microbial cell walls and membranes, the inhibition of microbial enzyme and biofilm formation, the modulation of microbial gene expression and quorum sensing, and the induction of microbial cell death. Therefore, the present study evaluated the potentials of aqueous and ethanol extracts of S. cumini, M. oleifera, and T. cordifolia in managing infections as measured by their inhibitory effects on species. Materials and method Syzygium cumini, M. oleifera, and T. cordifolia were obtained and authenticated, and their aqueous and ethanol extracts were prepared. The antibacterial properties of the aqueous and ethanol extracts were examined. In addition to broth microdilution and biofilm development experiments, we also employed disk diffusion and agar-well diffusion techniques. The inocula of various species, including krusei, parapsilosis, utilis, albicans, and glabrata, were prepared for these assays. The synergistic effect of plant extracts with fluconazole was also evaluated. Results Syzygium cumini, M. oleifera, and T. cordifolia emerge as promising sources for the development of effective and sustainable antimicrobial interventions. Interestingly, the aqueous and ethanol extracts were effective against the selected species. Also, the synergistic combination of plant extracts with fluconazole was observed to triple the potency of the extracts. Furthermore, the potency of the plant extract as an antifungal and synergistic agent was ranked as S. cumini > M. oleifera > T. cordifolia. Conclusively, the plant extracts are effective in the management of opportunistic fungal infections.
Collapse
Affiliation(s)
- Adedayo O Adelakun
- Biological Sciences, Southeast Iowa Regional Medical Center, West Burlington, USA
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, USA
| | - Uzochukwu Adabanya
- Anatomical Sciences, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Adekunle E Omole
- Cell Biology and Anatomy, Louisiana State University, Health Science Center, New Orleans, USA
| | | | - Emmanuel T Bello
- Science Laboratory Technology, New Land Polytechnic, Ilorin, NGA
| |
Collapse
|
3
|
Gómez-Casanova N, Martín-Serrano Ortiz Á, Heredero-Bermejo I, Sánchez-Nieves J, Luis Copa-Patiño J, Javier de la Mata F. Potential anti-adhesion activity of novel carbosilane zwitterionic dendrimers against eukaryotic and prokaryotic pathogenic microorganisms. Eur J Pharm Biopharm 2023; 191:158-165. [PMID: 37536578 DOI: 10.1016/j.ejpb.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The development of biofilms on different surfaces continues to be a major public health problem. The antimicrobial resistance and the difficulty of finding drugs capable of combating these established biofilms generates the urgent need to find compounds that prevent cells from settling and establishing of these complex communities of microorganisms. Zwitterionic modification of nanomaterials allows the formation of a hydration layer, and this highly hydrophilic surface provides antifouling properties as well as a good biocompatibility by preventing non-specific interactions. Thus, they are appropriate candidates to prevent microbial adhesion to different surfaces and, in consequence, avoid biofilm formation. For this reason, we have incorporated zwitterionic moieties in multivalent systems, as are carbosilane dendrimers. Characterization of these systems was performed using nuclear magnetic resonance and mass spectrometry. It has been analysed if the new molecules have capacity to inhibit the biofilm formation in Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. The results showed that they were more effective against S. aureus, observing a biofilm reduction of 81.5% treating with 32 mg/L of G2SiZWsf dendrimer and by 72.5% using 32 mg/L of the G3SiZWsf dendrimer. Finally, the absence of cytotoxicity was verified by haemolysis and cytotoxicity studies in human cells lines.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Ángela Martín-Serrano Ortiz
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain
| | - Irene Heredero-Bermejo
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain
| | - Javier Sánchez-Nieves
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - José Luis Copa-Patiño
- University of Alcalá, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Madrid, Spain.
| | - F Javier de la Mata
- University of Alcalá, Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
4
|
Kraft L, Ribeiro VST, Petroski LP, Herai RH, Peronni KC, Figueiredo DLA, Motta FA, Tuon FF. Saprochaete clavata invasive infection: characterization, antifungal susceptibility, and biofilm evaluation of a rare yeast isolated in Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e12. [PMID: 36722674 PMCID: PMC9886229 DOI: 10.1590/s1678-9946202365012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/07/2022] [Indexed: 02/02/2023] Open
Abstract
Rare emerging pathogens such as Saprochaete clavata are associated with invasive fungal diseases, high morbidity, mortality, rapidly fatal infections, and outbreaks. However, little is known about S. clavata infections, epidemiology, risk factors, treatment, biofilms, and disease outcomes. The objective of this study was to describe a new case of severe S. clavata infection in a patient diagnosed at a referral children's hospital in Brazil, including antifungal minimal inhibitory concentration, S. clavata biofilm characterization, and molecular characterization. The S. clavata isolated from an immunocompromised 11-year-old male patient was characterized using MALDI-TOF, Gram staining, scanning electron microscopy (SEM), and next generation sequencing (NGS) of genomic DNA. Biofilm production was also evaluated in parallel with determining minimal inhibitory concentration (MIC) and biofilm sensitivity to antifungal treatment. We observed small to medium, whitish, farinose, dry, filamentous margin colonies, yeast-like cells with bacillary features, and biofilm formation. The MALDI-TOF system yielded a score of ≥ 2,000, while NGS confirmed S. clavata presence at the nucleotide level. The MIC values (in mg L-1) for tested drugs were as follows: fluconazole = 2, voriconazole ≤ 2, caspofungin ≥ 8, micafungin = 2, amphotericin B = 4, flucytosine ≤ 1, and anidulafungin = 1. Amphotericin B can be active against S. clavata biofilm and the fungus can be susceptible to new azoles. These findings were helpful for understanding the development of novel treatments for S. clavata-induced disease, including combined therapy for biofilm-associated infections.
Collapse
Affiliation(s)
- Letícia Kraft
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Pós-Graduação em Ciências da Saúde, Laboratório de Doenças Infecciosas e Emergentes, Curitiba, Paraná, Brazil,Hospital Infantil Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Pós-Graduação em Ciências da Saúde, Laboratório de Doenças Infecciosas e Emergentes, Curitiba, Paraná, Brazil
| | - Luiz Pedro Petroski
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Pós-Graduação em Ciências da Saúde, Laboratório de Bioinformática e Neurogenética, Curitiba, Paraná, Brazil
| | - Roberto Hirochi Herai
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Pós-Graduação em Ciências da Saúde, Laboratório de Bioinformática e Neurogenética, Curitiba, Paraná, Brazil
| | | | | | | | - Felipe Francisco Tuon
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Pós-Graduação em Ciências da Saúde, Laboratório de Doenças Infecciosas e Emergentes, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
López-Barona P, Verdú-Expósito C, Martín-Pérez T, Gómez-Casanova N, Lozano-Cruz T, Ortega P, Gómez R, Pérez-Serrano J, Heredero-Bermejo I. Amoebicidal activity of cationic carbosilane dendrons derived with 4-phenylbutyric acid against Acanthamoeba griffini and Acanthamoeba polyphaga trophozoites and cysts. Sci Rep 2022; 12:14926. [PMID: 36056060 PMCID: PMC9440212 DOI: 10.1038/s41598-022-19200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Amoebae from the genus Acanthamoeba are important pathogens responsible for severe illnesses in humans such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. In the last few decades, AK diagnoses have steadily increased. Most patients suffering from AK were contact lens users and the infection was related to poor hygiene. However, therapy is not yet well established, and treatments may last for several months due to resistance. Moreover, these treatments have been described to generate cytotoxicity. Therefore, there is an urgent need to develop new therapeutic strategies against AK. In this study, the amoebicidal activity of different generation cationic carbosilane dendrons derived with 4-phenylbutyric acid was demonstrated against Acanthamoeba polyphaga and Acanthamoeba griffini trophozoites and cysts. In addition, the combination of chlorhexidine digluconate and the most effective dendron (ArCO2G2(SNMe3I)4) showed an in vitro effect against Acanthamoeba trophozoites and cysts, reducing the minimal trophozoite amoebicidal concentration as well as concentrations with cysticidal activity.
Collapse
Affiliation(s)
- P López-Barona
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - C Verdú-Expósito
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - T Martín-Pérez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - N Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - T Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - P Ortega
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - R Gómez
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - J Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - I Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain.
| |
Collapse
|
6
|
Gómez-Casanova N, Torres-Cano A, Elias-Rodriguez AX, Lozano T, Ortega P, Gómez R, Pérez-Serrano J, Copa-Patiño JL, Heredero-Bermejo I. Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics 2022; 14:pharmaceutics14081604. [PMID: 36015230 PMCID: PMC9416558 DOI: 10.3390/pharmaceutics14081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, Candida glabrata has become an important emerging opportunistic pathogen not only because of the increase in nosocomial infections frequency but also because of its ability to form biofilms and its innate resistance to commercial antifungals. These characteristics make this pathogen a major problem in hospital settings, including problems regarding equipment, and in immunosuppressed patients, who are at high risk for candidemia. Therefore, there is an urgent need for the development of and search for new antifungal drugs. In this study, the efficacy of two dendritic wedges with 4-phenyl butyric acid (PBA) at the focal point and cationic charges on the surface ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) was studied against C. glabrata strain to inhibit the formation of biofilms and eliminate established biofilm. For this, MBIC (minimum biofilm inhibitory concentration), MBDC (minimum biofilm damaging concentrations), as well as MFCB (minimum fungicidal concentration in biofilm) and MBEC (minimum biofilm eradicating concentration) were determined. In addition, different combinations of dendrons and amphotericin B were tested to study possible synergistic effects. On the other hand, cytotoxicity studies were performed. C. glabrata cells and biofilm structure were visualized by confocal microscopy. ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) dendrons showed both an MBIC of 8 mg/L and a MBDC of 32 mg/L and 64 mg/L, respectively. These dendrons managed to eradicate the entirety of an established biofilm. In combination with the antifungal amphotericin, it was possible to prevent the generation of biofilms and eradicate established biofilms at lower concentrations than those required individually for each compound at these conditions.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Torres-Cano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Xiaohe Elias-Rodriguez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Tania Lozano
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Irene Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
- Correspondence:
| |
Collapse
|
7
|
Special Issue: Alternative Therapeutic Approaches of Candida Infections. J Fungi (Basel) 2022; 8:jof8020170. [PMID: 35205924 PMCID: PMC8880669 DOI: 10.3390/jof8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 01/26/2023] Open
Abstract
In recent decades, the prevalence of resistant fungal isolates has been steadily increasing both in veterinary and human medicine as well as in agriculture [...]
Collapse
|