1
|
Mold and Stain Resistance of Bamboo Treated with Pyraclostrobin Fungicide. Polymers (Basel) 2022; 14:polym14245537. [PMID: 36559904 PMCID: PMC9786610 DOI: 10.3390/polym14245537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Bamboo is rich in starch and sugars and can be infected by mold and stain fungi, degrading its performance, shortening its service life, and reducing its utilization value. It is crucial to investigate how to protect bamboo against mold and stain fungi. The zone of inhibition test was used to evaluate the antifungal activity of azoxystrobin, kresoxim-methyl, pyraclostrobin and 3-iodo-2-propynyl-butylcarbamate (IPBC) against stain fungi (Botryodiplodia theobromae, Fusarium moniliforme, and Alternaria alternate) and mold fungi (Aspergillus niger, Penicillium citrinum, and Trichoderma viride) to develop new chemicals to protect bamboo against stain fungi and molds. The inhibitory activity of the composite pyraclostrobin and IPBC with different ratios was evaluated. Water-based formulations of the fungi were used to treat the bamboo, and the mold and stain resistance of the bamboo was investigated at different chemical retention rates. The results showed that the antifungal activity of pyraclostrobin was significantly higher than that of azoxystrobin and kresoxim-methyl. Different degrees of inhibitory activities against the stain and mold fungi were observed, and the inhibitory activity was higher against stain fungi than against molds. The three stain fungi were completely inhibited at a 7:3 ratio of pyraclostrobin to IPBC and 0.1% concentration. As the ratio increased, the inhibitory effect against mixed mold strains improved. The control efficacy of the pyraclostrobin formulations Str-1 and Str-2 at 0.1% concentration was 100% against Alternaria alternate and 70.8% against Fusarium moniliforme. The control efficacy of the composite formulations SI-1 and SI-2 at 0.1% concentration was 100% against all three stain fungi and greater than 91.8% against the mixed mold strains. This study provides new insights into the utilization of pyraclostrobin and its composite formulations as new bamboo antifungal agents.
Collapse
|
2
|
Wang J, Wang Z, Yu H, Wu W, Zhang J, Li J. Designing a novel type of multifunctional bamboo surface based on an RGO/Ag coating. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Prakash J, Krishna SBN, Kumar P, Kumar V, Ghosh KS, Swart HC, Bellucci S, Cho J. Recent Advances on Metal Oxide Based Nano-Photocatalysts as Potential Antibacterial and Antiviral Agents. Catalysts 2022; 12:1047. [DOI: 10.3390/catal12091047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and biological species has been known for decades; however, its extension to indoor environments in public places has always been challenging. Many efforts have been made in this direction in the last two–three years since the COVID-19 pandemic started. Furthermore, the development of efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for fighting with such a pandemic situation is a high research priority. In recent years, several metal oxides-based nano-photocatalysts have been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological species. The present review briefly discusses the advances made in the last two to three years for photocatalytic viral and bacterial disinfections. Moreover, emphasis has been given to the tailoring of such nano-photocatalysts in disinfecting surfaces, air, and water to stop viral/bacterial infection in the indoor environment. The role of such nano-photocatalysts in the photocatalytic disinfection of COVID-19 has also been highlighted with their future applicability in controlling such pandemics.
Collapse
|
4
|
Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation. COATINGS 2022. [DOI: 10.3390/coatings12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial spores are highly resistant to be inactivated by conventional water disinfection methods. In this study, the inactivation efficiency and mechanisms of Bacillus subtitles (B. subtilis) spores by natural sphalerite (NS) with persulfate (PS) under visible light (Vis) irradiation were investigated for the first time. The NS was composed of ZnS doped with trace amounts of metal ions, including As, Fe, Cd, and Mn. The results showed that 7 log of B. subtilis spores could be completely inactivated within 5 h in the Vis/NS/PS photocatalytic system, and the inactivation efficiency was about four and seven times higher than that of the NS/PS system and the Vis/PS system, respectively. The photo-generated electrons are generated by the excitation of NS under the illumination activated PS to form PS radicals (∙SO4−) and hydroxyl radicals (∙OH), which are the main active species for spore inactivation. Mechanism studies further showed that spore inactivation was related to physiological responses, including the increase in intracellular reactive oxygen species, the change of induced antioxidant enzyme activity, and the change of total protein. Furthermore, the dynamic changes of cells during spore inactivation were observed by SEM. These results not only clarify the relationship between the cell physiological stress response and inactivation mechanism of spores, but also reveal the interaction between minerals and PS under Vis, which provides technical methods for the inactivation of bacterial spores in the field of water disinfection.
Collapse
|
5
|
Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface. Polymers (Basel) 2022; 14:polym14050884. [PMID: 35267708 PMCID: PMC8912404 DOI: 10.3390/polym14050884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023] Open
Abstract
Water-based antimicrobial agents, used in environmentally friendly applications, are widely used in wood protection industries. Furthermore, nanomaterials as antimicrobial agents, because of their biocidal component, huge specific surface area, and unique nanoscale effect, have attracted attention in the field of biodurability. We employed aqueous dispersed nano-silver with a diameter of 10 nm~20 nm to treat poplar wood and evaluated its leaching resistance and anti-mold effect on the wood surface. The results revealed that the higher the retention of the nano-silver, the stronger the protection efficiency of the wood surface against three molds (Aspergillus niger V. Tiegh, Penicillium citrinum Thom, and Trichoderma viride Pers. ex Fr); and the leachability of the nano-silver presented a slowly growing trend with the increase in the retention. When the wood surface attained a silver retention of 0.324 g·m−2, its anti-mold efficiency against Aspergillus niger V. Tiegh, Penicillium citrinum Thom, and Trichoderma viride Pers. ex Fr reached 80, 75, and 80%, respectively, which achieved or even exceeded the required standard value of effective mold inhibition (75%). Notably, the nano-silver leaching rate at this retention attained merely 4.75 %. The nanoparticle, well distributed on a wood surface, may promote sufficient contact with fungi as well as strong interaction with wood cell wall components, which probably contributed to the effective anti-mold efficiency and the leaching resistance. This study provided positive evidence for the anti-mold effect of nano-silver on wood surface.
Collapse
|
6
|
Phan DN, Khan MQ, Nguyen VC, Vu-Manh H, Dao AT, Thanh Thao P, Nguyen NM, Le VT, Ullah A, Khatri M, Kim IS. Investigation of Mechanical, Chemical, and Antibacterial Properties of Electrospun Cellulose-Based Scaffolds Containing Orange Essential Oil and Silver Nanoparticles. Polymers (Basel) 2021; 14:polym14010085. [PMID: 35012108 PMCID: PMC8747631 DOI: 10.3390/polym14010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/28/2023] Open
Abstract
This study demonstrated a controllable release properties and synergistic antibacterial actions between orange essential oil (OEO) and silver nanoparticles (AgNPs) incorporated onto cellulose (CL) nanofibers. The preparation of AgNPs attached on CL nanofibers was conducted through multiple processes including the deacetylation process to transform cellulose acetate (CA) nanofibers to CL nanofibers, the in situ synthesis of AgNPs, and the coating of as-prepared silver composite CL nanofibers using OEO solutions with two different concentrations. The success of immobilization of AgNPs onto the surface of CL nanofibers and the incorporation of OEO into the polymer matrix was confirmed by SEM-EDS, TEM, XRD, and FT-IR characterizations. The tensile strength, elongation at break, and Young’s modulus of the nanofibers after each step of treatment were recorded and compared to pristine CA nanofibers. The high antibacterial activities of AgNPs and OEO were assessed against Gram-positive B. subtilis and Gram-negative E. coli microorganisms. The combined effects of two antimicrobials, AgNPs and OEO, were distinctively recognized against E. coli.
Collapse
Affiliation(s)
- Duy-Nam Phan
- School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (H.V.-M.); (A.-T.D.); (P.T.T.)
- Correspondence: (D.-N.P.); (M.Q.K.); (I.-S.K.)
| | - Muhammad Qamar Khan
- Department of Textile and Clothing, Faculty of Textile Engineering and Technology, National Textile University, Karachi Campus, Karachi 74900, Pakistan
- Correspondence: (D.-N.P.); (M.Q.K.); (I.-S.K.)
| | - Van-Chuc Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (V.-C.N.); (N.-M.N.)
| | - Hai Vu-Manh
- School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (H.V.-M.); (A.-T.D.); (P.T.T.)
| | - Anh-Tuan Dao
- School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (H.V.-M.); (A.-T.D.); (P.T.T.)
| | - Phan Thanh Thao
- School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (H.V.-M.); (A.-T.D.); (P.T.T.)
| | - Ngoc-Mai Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam; (V.-C.N.); (N.-M.N.)
| | - Van-Tuan Le
- School of Mechanical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam;
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Muzamil Khatri
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
- Correspondence: (D.-N.P.); (M.Q.K.); (I.-S.K.)
| |
Collapse
|