1
|
Silva DF, Mazza Rodrigues JL, Erikson C, Silva AMM, Huang L, Araujo VLVP, Matteoli FP, Mendes LW, Araujo ASF, Pereira APA, Melo VMM, Cardoso EJBN. Grazing exclusion-induced changes in soil fungal communities in a highly desertified Brazilian dryland. Microbiol Res 2024; 285:127763. [PMID: 38805979 DOI: 10.1016/j.micres.2024.127763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/09/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Soil desertification poses a critical ecological challenge in arid and semiarid climates worldwide, leading to decreased soil productivity due to the disruption of essential microbial community processes. Fungi, as one of the most important soil microbial communities, play a crucial role in enhancing nutrient and water uptake by plants through mycorrhizal associations. However, the impact of overgrazing-induced desertification on fungal community structure, particularly in the Caatinga biome of semiarid regions, remains unclear. In this study, we assessed the changes in both the total fungal community and the arbuscular mycorrhizal fungal community (AMF) across 1. Natural vegetation (native), 2. Grazing exclusion (20 years) (restored), and 3. affected by overgrazing-induced degradation (degraded) scenarios. Our assessment, conducted during both the dry and rainy seasons in Irauçuba, Ceará, utilized Internal Transcribed Spacer (ITS) gene sequencing via Illumina® platform. Our findings highlighted the significant roles of the AMF families Glomeraceae (∼71% of the total sequences) and Acaulosporaceae (∼14% of the total sequences) as potential key taxa in mitigating climate change within dryland areas. Moreover, we identified the orders Pleosporales (∼35% of the total sequences) and Capnodiales (∼21% of the total sequences) as the most abundant soil fungal communities in the Caatinga biome. The structure of the total fungal community differed when comparing native and restored areas to degraded areas. Total fungal communities from native and restored areas clustered together, suggesting that grazing exclusion has the potential to improve soil properties and recover fungal community structure amid global climate change challenges.
Collapse
Affiliation(s)
- Danilo F Silva
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil; Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Jorge L Mazza Rodrigues
- Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christian Erikson
- Soil EcoGenomics Laboratory, Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Antonio M M Silva
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Laibin Huang
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Victor L V P Araujo
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Filipe P Matteoli
- Laboratory of Microbial Bioinformatic, Faculty of Sciences, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, Piracicaba, São Paulo, Brazil
| | | | | | | | - Elke J B N Cardoso
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
3
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
5
|
Martins BR, Siani R, Treder K, Michałowska D, Radl V, Pritsch K, Schloter M. Cultivar-specific dynamics: unravelling rhizosphere microbiome responses to water deficit stress in potato cultivars. BMC Microbiol 2023; 23:377. [PMID: 38036970 PMCID: PMC10691024 DOI: 10.1186/s12866-023-03120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Growing evidence suggests that soil microbes can improve plant fitness under drought. However, in potato, the world's most important non-cereal crop, the role of the rhizosphere microbiome under drought has been poorly studied. Using a cultivation independent metabarcoding approach, we examined the rhizosphere microbiome of two potato cultivars with different drought tolerance as a function of water regime (continuous versus reduced watering) and manipulation of soil microbial diversity (i.e., natural (NSM), vs. disturbed (DSM) soil microbiome). RESULTS Water regime and soil pre-treatment showed a significant interaction with bacterial community composition of the sensitive (HERBST) but not the resistant cultivar (MONI). Overall, MONI had a moderate response to the treatments and its rhizosphere selected Rhizobiales under reduced watering in NSM soil, whereas Bradyrhizobium, Ammoniphilus, Symbiobacterium and unclassified Hydrogenedensaceae in DSM soil. In contrast, HERBST response to the treatments was more pronounced. Notably, in NSM soil treated with reduced watering, the root endophytic fungus Falciphora and many Actinobacteriota members (Streptomyces, Glycomyces, Marmoricola, Aeromicrobium, Mycobacterium and others) were largely represented. However, DSM soil treatment resulted in no fungal taxa and fewer enrichment of these Actinobacteriota under reduced watering. Moreover, the number of bacterial core amplicon sequence variants (core ASVs) was more consistent in MONI regardless of soil pre-treatment and water regimes as opposed to HERBST, in which a marked reduction of core ASVs was observed in DSM soil. CONCLUSIONS Besides the influence of soil conditions, our results indicate a strong cultivar-dependent relationship between the rhizosphere microbiome of potato cultivars and their capacity to respond to perturbations such as reduced soil moisture. Our study highlights the importance of integrating soil conditions and plant genetic variability as key factors in future breeding programs aiming to develop drought resistance in a major food crop like potato. Elucidating the molecular mechanisms how plants recruit microbes from soil which help to mitigate plant stress and to identify key microbial taxa, which harbour the respective traits might therefore be an important topic for future research.
Collapse
Affiliation(s)
- Benoit Renaud Martins
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair for Environmental Microbiology, Technical University of Munich, Freising, Germany
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, 76-009, Bonin, Bonin Str 3, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, 76-009, Bonin, Bonin Str 3, Poland
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair for Environmental Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Dubey S, Bhattacharjee A, Pradhan S, Kumar A, Sharma S. Composition of fungal communities upon multiple passaging of rhizosphere microbiome for salinity stress mitigation in Vigna radiata. FEMS Microbiol Ecol 2023; 99:fiad132. [PMID: 37838474 DOI: 10.1093/femsec/fiad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
The top-down approach of microbiome-mediated rhizosphere engineering has emerged as an eco-friendly approach for mitigating stress and enhancing crop productivity. It has been established to mitigate salinity stress in Vigna radiata using multi-passaging approach. During the process of acclimatization under increasing levels of salinity stress, the structure of rhizospheric microbial community undergoes dynamic changes, while facilitating stress mitigation in plants. In this study, using ITS-based amplicon sequencing, the dynamics of rhizosphere fungal community was unravelled over successive passages under salinity stress in V. radiata. Clear shifts were evident among the fungal community members under stress and non-stress conditions, upon application of acclimatized rhizosphere microbiome in V. radiata across successive passages. These shifts correlated with enhanced plant biometrics and reduced stress marker levels in plant. Significant changes in the fungal community structure were witnessed in the rhizosphere across specific passaging cycles under salinity stress, which possibly facilitated stress mitigation in V. radiata.
Collapse
Affiliation(s)
- Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Abhay Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, González-García V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of their Associated Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2251. [PMID: 37375877 DOI: 10.3390/plants12122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Jerome Grimplet
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - José Casanova-Gascón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Carmen Julián-Lagunas
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| | - Vicente González-García
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| |
Collapse
|
8
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Li Y, Li X, Zhang W, Zhang J, Wang H, Peng J, Wang X, Yan J. Belowground microbiota analysis indicates that Fusarium spp. exacerbate grapevine trunk disease. ENVIRONMENTAL MICROBIOME 2023; 18:29. [PMID: 37013554 PMCID: PMC10071613 DOI: 10.1186/s40793-023-00490-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Grapevine trunk diseases (GTDs) are disease complexes that are major threats to viticulture in most grapevine growing regions. The microbiomes colonizing plant belowground components form complex associations with plants, play important roles in promoting plant productivity and health in natural environments, and may be related to GTD development. To investigate associations between belowground fungal communities and GTD symptomatic or asymptomatic grapevines, fungal communities associated with three soil-plant compartments (bulk soils, rhizospheres, and roots) were characterized by ITS high-throughput amplicon sequencing across two years. RESULTS The fungal community diversity and composition differs according to the soil-plant compartment type (PERMANOVA, p < 0.001, 12.04% of variation explained) and sampling year (PERMANOVA, p < 0.001, 8.83%), whereas GTD symptomatology exhibited a weaker, but still significant association (PERMANOVA, p < 0.001, 1.29%). The effects of the latter were particularly prominent in root and rhizosphere community comparisons. Many GTD-associated pathogens were detected, but their relative abundances were not correlated (or were negatively correlated) to symptomatology. Fusarium spp., were enriched in symptomatic roots and rhizospheres compared to asymptomatic counterparts, suggesting that their abundances were positively correlated with symptomatic vines. Inoculation tests revealed that Fusarium isolates, similar to Dactylonectria macrodidyma, a pathogen associated with black foot disease, caused dark brown necrotic spots on stems in addition to root rot, which blackened lateral roots. Disease indices were higher with co-inoculation than single inoculation with a Fusarium isolate or D. macrodidyma, suggesting that Fusarium spp. can exacerbate disease severity when inoculated with other known GTD-associated pathogens. CONCLUSIONS The belowground fungal microbiota of grapevines varied from soil-plant compartments, the years and whether showed GTD symptoms. The GTDs symptoms were related to the enrichment of Fusarium spp. rather than the relative abundances of GTD pathogens. These results demonstrate the effects of fungal microbiota of roots and rhizospheres on GTDs, while providing new insights into opportunistic pathogenesis of GTDs and potential control practices.
Collapse
Affiliation(s)
- Yonghua Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiao Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, China
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Chen D, Zeng J, Wan X, Wang Y, Lan S, Zou S, Qian X. Variation in Community Structure of the Root-Associated Fungi of Cinnamomum camphora Forest. J Fungi (Basel) 2022; 8:1210. [PMID: 36422030 PMCID: PMC9699271 DOI: 10.3390/jof8111210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Plant-associated microbial communities play essential roles in the vegetative cycle, growth, and development of plants. Cinnamomum camphora is an evergreen tree species of the Lauraceae family with high ornamental, medicinal, and economic values. The present study analyzed the composition, diversity, and functions of the fungal communities in the bulk soil, rhizosphere, and root endosphere of C. camphora at different slope positions by high-throughput sequencing. The results showed that the alpha diversity of the fungal communities in the bulk soil and rhizosphere of the downhill plots was relatively higher than those uphill. A further analysis revealed that Mucoromycota, the dominant fungus at the phylum level, was positively correlated with soil bulk density, total soil porosity, mass water content, alkaline-hydrolyzable nitrogen, maximum field capacity, and least field capacity. Meanwhile, the prevalent fungus at the class level, Mortierellomycetes, was positively correlated with total phosphorus and available and total potassium, but negatively with alkaline-hydrolyzable nitrogen. Finally, the assignment of the functional guilds to the fungal operational taxonomic units (OTUs) revealed that the OTUs highly enriched in the downhill samples compared with the uphill samples, which were saprotrophs. Thus, this study is the first to report differences in the fungal community among the different soil/root samples and between C. camphora forests grown at different slope positions. We also identified the factors favoring the root-associated beneficial fungi in these forests, providing theoretical guidance for managing C. camphora forests.
Collapse
Affiliation(s)
- Deqiang Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaoyan Zeng
- Large Data Institute, Fuzhou University of International Studies and Trade, Fuzhou 350002, China
| | - Xiaohui Wan
- Fujian Forestry Investigation and Planning Institute, Fuzhou 350002, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou 014030, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Darriaut R, Antonielli L, Martins G, Ballestra P, Vivin P, Marguerit E, Mitter B, Masneuf-Pomarède I, Compant S, Ollat N, Lauvergeat V. Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines. Front Microbiol 2022; 13:1031064. [PMID: 36439844 PMCID: PMC9685171 DOI: 10.3389/fmicb.2022.1031064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 08/31/2023] Open
Abstract
Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guilherme Martins
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Patricia Ballestra
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Philippe Vivin
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Elisa Marguerit
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Nathalie Ollat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
12
|
Wu F, Wei P, Li X, Huang M, Zhou L, Liu Z. Research progress of rhizosphere effect in the phytoremediation of uranium-contaminated soil. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface. Microbiol Spectr 2022; 10:e0053322. [PMID: 36121227 DOI: 10.1128/spectrum.00533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.
Collapse
|
14
|
Li Y, He X, Yuan H, Lv G. Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms 2022; 10:microorganisms10081644. [PMID: 36014066 PMCID: PMC9414475 DOI: 10.3390/microorganisms10081644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/02/2023] Open
Abstract
Lycium ruthenicum, a halophytic shrub, has been used to remediate saline soils in northwest China. However, little is known about its root-associated microbial community and how it may be affected by the plant’s growth cycle. In this study, we investigate the microbial community structure of L. ruthenicum by examining three root compartments (rhizosphere, rhizoplane, and endosphere) during four growth stages (vegetative, flowering, fruiting, and senescence). The microbial community diversity and composition were determined by Illumina MiSeq sequencing of the 16S V3–V4 and 18S ITS regions. Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most dominant fungal phyla. The alpha diversity of the bacterial communities was highest in the rhizosphere and decreased from the rhizosphere to the endosphere compartments; the fungal communities did not show a consistent trend. The rhizosphere, rhizoplane, and endosphere had distinct bacterial community structures among the three root compartments and from the bulk soil. Additionally, PERMANOVA indicated that the effect of rhizocompartments explained a large proportion of the total community variation. Differential and biomarker analysis not only revealed that each compartment had unique biomarkers and was enriched for specific bacteria, but also that the biomarkers changed with the plant growth cycle. Fungi were also affected by the rhizocompartment, but to a much less so than bacteria, with significant differences in the community composition along the root compartments observed only during the vegetative and flowering stages. Instead, the growth stages appear to account for most of the fungal community variation as demonstrated by PCoA and NMDS, and supported by differential and biomarker analysis, which revealed that the fungal community composition in the rhizosphere and endosphere were dynamic in response to the growth stage. Many enriched OTUs or biomarkers that were identified in the root compartments were potentially beneficial to the plant, meanwhile, some harmful OTUs were excluded from the root, implying that the host plant can select for beneficial bacteria and fungi, which can promote plant growth or increase salt tolerance. In conclusion, the root compartment and growth stage were both determinant factors in structuring the microbial communities of L. ruthenicum, but the effects were different in bacteria and fungi, suggesting that bacterial and fungal community structures respond differently to these growth factors.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Hongfei Yuan
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
- Correspondence:
| |
Collapse
|
15
|
Gramaje D, Eichmeier A, Spetik M, Carbone MJ, Bujanda R, Vallance J, Rey P. Exploring the Temporal Dynamics of the Fungal Microbiome in Rootstocks, the Lesser-Known Half of the Grapevine Crop. J Fungi (Basel) 2022; 8:jof8050421. [PMID: 35628677 PMCID: PMC9144578 DOI: 10.3390/jof8050421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Rootstocks are the link between the soil and scion in grapevines, can provide tolerance to abiotic and biotic stresses, and regulate yield and grape quality. The vascular system of grapevine rootstocks in nurseries is still an underexplored niche for research, despite its potential for hosting beneficial and pathogenic microorganisms. The purpose of this study was to investigate the changes in the composition of fungal communities in 110 Richter and 41 Berlandieri rootstocks at four stages of the grapevine propagation process. Taxonomic analysis revealed that the fungal community predominantly consisted of phylum Ascomycota in all stages of the propagation process. The alpha-diversity of fungal communities differed among sampling times for both rootstocks, with richness and fungal diversity in the vascular system decreasing through the propagation process. The core microbiome was composed of the genera Cadophora, Cladosporium, Penicillium and Alternaria in both rootstocks, while the pathogenic genus Neofusicoccum was identified as a persistent taxon throughout the propagation process. FUNguild analysis showed that the relative abundance of plant pathogens associated with trunk diseases increased towards the last stage in nurseries. Fungal communities in the vascular system of grapevine rootstocks differed between the different stages of the propagation process in nurseries. Numerous genera associated with potential biocontrol activity and grapevine trunk diseases were identified. Understanding the large diversity of fungi in the rootstock vascular tissue and the interactions between fungal microbiota and grapevine will help to develop sustainable strategies for grapevine protection.
Collapse
Affiliation(s)
- David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain;
- Correspondence:
| | - Aleš Eichmeier
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (A.E.); (M.S.)
| | - Milan Spetik
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (A.E.); (M.S.)
| | - María Julia Carbone
- Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay;
| | - Rebeca Bujanda
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain;
| | - Jessica Vallance
- Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140 Villenave d’Ornon, France; (J.V.); (P.R.)
- Université de Bordeaux, Bordeaux Sciences Agro, UMR 1065 SAVE, 33175 Gradignan, France
| | - Patrice Rey
- Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140 Villenave d’Ornon, France; (J.V.); (P.R.)
- Université de Bordeaux, Bordeaux Sciences Agro, UMR 1065 SAVE, 33175 Gradignan, France
- Institut des Sciences Analytiques et de Physicochimie pour l‘Environnement et les Matériaux—UMR 5254, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IBEAS Avenue de l’Université, 64013 Pau, France
| |
Collapse
|
16
|
Špetík M, Balík J, Híc P, Hakalová E, Štůsková K, Frejlichová L, Tříska J, Eichmeier A. Lignans Extract from Knotwood of Norway Spruce—A Possible New Weapon against GTDs. J Fungi (Basel) 2022; 8:jof8040357. [PMID: 35448588 PMCID: PMC9025846 DOI: 10.3390/jof8040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine trunk diseases (GTDs) pose a major threat to the wine industry worldwide. Currently, efficient biological methods or chemical compounds are not available for the treatment of infected grapevines. In the present study, we used an extract from the knotwood of spruce trees as a biological control against GTDs. Our in vitro trial was focused on the antifungal effects of the extract against the most common GTD pathogens—Cadophora luteo-olivacea, Dactylonectria torresensis, Diaporthe ampelina, Diaporthe bohemiae, Diplodia seriata, Eutypa lata, and Phaeoacremonium minimum. Our in vitro trial revealed a high antifungal effect of the extract against all tested fungi. The inhibition rates varied among the different species from 30% to 100% using 1 mg·mL−1 extract. Subsequently, the efficiency of the extract was supported by an in planta experiment. Commercial grafts of Vitis vinifera were treated with the extract and planted. The total genomic DNA of grapevines was extracted 10 days and 180 days after the treatment. The fungal microbial diversities of the treated/untreated plants were compared using high-throughput amplicon sequencing (HTAS). Treated plants showed 76.9% lower relative abundance of the genus Diaporthe and 70% lower relative abundance of the genus Phaeoacremonium 10 days after treatment. A similar scenario was observed for the genus Cadophora 180 days after treatment, where treated plants showed 76% lower relative abundance of this genus compared with untreated grapevines.
Collapse
Affiliation(s)
- Milan Špetík
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Josef Balík
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Pavel Híc
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Eliška Hakalová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Kateřina Štůsková
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Lucie Frejlichová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Jan Tříska
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| |
Collapse
|
17
|
Metagenomic Assessment Unravels Fungal Microbiota Associated to Grapevine Trunk Diseases. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grapevine trunk diseases (GTDs) are among the most important problems that affect the longevity and productivity of vineyards in all the major growing regions of the world. They are slow-progression diseases caused by several wood-inhabiting fungi with similar life cycles and epidemiology. The simultaneous presence of multiple trunk pathogens in a single plant together with the inconsistent GTDs symptoms expression, their isolation in asymptomatic plants, and the absence of effective treatments make these diseases extremely complex to identify and eradicate. Aiming to gain a better knowledge of GTDs and search sustainable alternatives to limit their development, the present work studied the fungal community structure associated with GTDs symptomatic and asymptomatic grapevines, following a metagenomic approach. Two important cultivars from the Alentejo region with different levels of susceptibility to GTDs were selected, namely, ‘Alicante Bouschet’ and ‘Trincadeira’. Deep sequencing of fungal-directed ITS1 amplicon led to the detection of 258 taxa, including 10 fungi previously described as responsible for GTDs. Symptomatic plants exhibited a lower abundance of GTDs-associated fungi, although with significantly higher diversity of those pathogens. Our results demonstrated that trunk diseases symptoms are intensified by a set of multiple GTDs-associated fungi on the same plant. The composition of fungal endophytic communities was significantly different according to the symptomatology and it was not affected by the cultivar. This study opens new perspectives in the study of GTDs-associated fungi and their relation to the symptomatology in grapevines.
Collapse
|
18
|
Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front Microbiol 2022; 13:826571. [PMID: 35317261 PMCID: PMC8934398 DOI: 10.3389/fmicb.2022.826571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The crop Vitis vinifera (L.) is of great economic importance as Chile is one of the main wine-producing countries, reaching a vineyard area of 145,000 ha. This vine crop is usually very sensitive to local condition changes and agronomic practices; therefore, strategies to counteract the expected future decrease in water level for agricultural irrigation, temperature increase, extreme water stress (abiotic stress), as well as increase in pathogenic diseases (biotic stress) related to climate change will be of vital importance for this crop. Studies carried out in recent years have suggested that arbuscular mycorrhizal fungi (AMF) can provide key ecosystem services to host plants, such as water uptake implementation and enhanced absorption of nutrients such as P and N, which are key factors for improving the nutritional status of the vine. AMF use in viticulture will contribute also to sustainable agronomic management and bioprotection against pathogens. Here we will present (1) the current status of grapevines in Chile, (2) the main problems in grapevines related to water stress and associated with climate change, (3) the importance of AMF to face water stress and pathogens, and (4) the application of AMF as a biotechnological and sustainable tool in vineyards.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Patricia Silva-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Talca, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ana Aguilar-Paredes
- Programa de Restauración Biológica de Suelos, Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Karlo Romero
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
19
|
Darriaut R, Lailheugue V, Masneuf-Pomarède I, Marguerit E, Martins G, Compant S, Ballestra P, Upton S, Ollat N, Lauvergeat V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. HORTICULTURE RESEARCH 2022; 9:uhac019. [PMID: 35184168 PMCID: PMC8985100 DOI: 10.1093/hr/uhac019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Guilherme Martins
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, Tulln, A-3430, Austria
| | - Patricia Ballestra
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | | | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| |
Collapse
|
20
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Cheng S, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front Microbiol 2021; 12:809473. [PMID: 35003041 PMCID: PMC8733408 DOI: 10.3389/fmicb.2021.809473] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
Collapse
Affiliation(s)
- Shen Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
22
|
Bettenfeld P, Cadena i Canals J, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Courty PE, Trouvelot S. The microbiota of the grapevine holobiont: A key component of plant health. J Adv Res 2021; 40:1-15. [PMID: 36100319 PMCID: PMC9481934 DOI: 10.1016/j.jare.2021.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine interacts different microbiota living around and within its tissues Addition of microbial genes to plant genome gives supplementary functions to the holobiont The composition of grapevine microbiota varies according to endogenous and exogenous factors Microbiota variations can lead to perturbations of grapevine metabolism The link between symptom emergence of dieback and microbial imbalance is currently studied
Background Grapevine is a woody, perennial plant of high economic importance worldwide. Like other plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this sense, microorganisms can interact with each other and regulate plant functions (including immunity) and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes a supra-organism, also called a holobiont, whose functioning is linked to established plant-microorganism interactions. Aim of review The overall health of the plant may be conditioned by the diversity and structure of microbial communities. Consequently, an optimal microbial composition will consist of a microbial balance allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or be generated by) a decline of the plant. The microbiome is an active component of the host also responsive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of the composition of plant microbiomes is needed. Key scientific concepts of review This article presents the current state of the art about the grapevine microbiota and its composition according to the plant compartments and the influencing factors. We also focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the possible interest of microbial engineering in an agrosystem such as viticulture.
Collapse
|
23
|
The Mycorrizal Status in Vineyards Affected by Esca. J Fungi (Basel) 2021; 7:jof7100869. [PMID: 34682291 PMCID: PMC8540504 DOI: 10.3390/jof7100869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
In this work we analyzed the relationship among native arbuscular mycorrhizal fungi (AMF) and vine roots affected by esca, a serious grapevine trunk disease. The AMF symbiosis was analyzed on the roots of neighboring plants (symptomatic and asymptomatic to esca) in 14 sites of three vineyards in Marche region (central–eastern Italy). The AMF colonization intensity, identified by non-vital staining, showed higher value in all esca symptomatic plants (ranging from 24.6% to 61.3%) than neighboring asymptomatic plants (from 17.4% to 57.6%). The same trend of Glomeromycota phylum abundance was detected by analyzing fungal operational taxonomic units (OTUs) linked to the AMF community, obtained by amplicon high throughput analysis of ITS 1 region. Overall, the highest amount of OTUs was detected on roots from symptomatic plants (0.42%), compared to asymptomatic roots (0.29%). Specific primer pairs for native Rhizophagus irregularis and Funneliformis mosseae AMF species, were designed in 28S rRNA and large subunit (LSU) ribosomal RNA, respectively, and droplet digital PCR protocol for absolute quantification was set up. A higher number of DNA copies of both fungal species were detected more frequently in symptomatic than asymptomatic vines. Our study suggests a relationship between esca and native AMF in grapevine. These results underline the importance of native rhizosphere microbial communities for a better knowledge of grapevine esca disease.
Collapse
|
24
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|