1
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
2
|
Yang ZW, Luo JY, Men Y, Liu ZH, Zheng ZK, Wang YH, Xie Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. MICROBIOME 2023; 11:244. [PMID: 37932839 PMCID: PMC10629178 DOI: 10.1186/s40168-023-01702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The true bugs (Heteroptera) occupy nearly all of the known ecological niches of insects. Among them, as a group containing more than 30,000 species, the phytophagous true bugs are making increasing impacts on agricultural and forestry ecosystems. Previous studies proved that symbiotic bacteria play important roles in these insects in fitting various habitats. However, it is still obscure about the evolutionary and ecological patterns of the microorganisms of phytophagous true bugs as a whole with comprehensive taxon sampling. RESULTS Here, in order to explore the symbiotic patterns between plant-feeding true bugs and their symbiotic microorganisms, 209 species belonging to 32 families of 9 superfamilies had been sampled, which covered all the major phytophagous families of true bugs. The symbiotic microbial communities were surveyed by full-length 16S rRNA gene and ITS amplicons respectively for bacteria and fungi using the PacBio platform. We revealed that hosts mainly affect the dominant bacteria of symbiotic microbial communities, while habitats generally influence the subordinate ones. Thereafter, we carried out the ancestral state reconstruction of the dominant bacteria and found that dramatic replacements of dominant bacteria occurred in the early Cretaceous and formed newly stable symbiotic relationships accompanying the radiation of insect families. In contrast, the symbiotic fungi were revealed to be horizontally transmitted, which makes fungal communities distinctive in different habitats but not significantly related to hosts. CONCLUSIONS Host and habitat determine microbial communities of plant-feeding true bugs in different roles. The symbiotic bacterial communities are both shaped by host and habitat but in different ways. Nevertheless, the symbiotic fungal communities are mainly influenced by habitat but not host. These findings shed light on a general framework for future microbiome research of phytophagous insects. Video Abstract.
Collapse
Affiliation(s)
- Zi-Wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Zhi-Hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Kai Zheng
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
3
|
Gerling M, von der Waydbrink G, Verch G, Büttner C, Müller MEH. Between Habitats: Transfer of Phytopathogenic Fungi along Transition Zones from Kettle Hole Edges to Wheat Ears. J Fungi (Basel) 2023; 9:938. [PMID: 37755047 PMCID: PMC10532505 DOI: 10.3390/jof9090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|
4
|
Janaviciene S, Venslovas E, Kadziene G, Matelioniene N, Berzina Z, Bartkevics V, Suproniene S. Diversity of Mycotoxins Produced by Fusarium Strains Infecting Weeds. Toxins (Basel) 2023; 15:420. [PMID: 37505689 PMCID: PMC10467119 DOI: 10.3390/toxins15070420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Although Fusarium is mainly known as an agricultural pathogen that affects monocotyledonous plants, it can also infect different species of weeds in the agricultural environment, thereby contributing to the production of mycotoxins in cereals. In this study, we present new developmental data on the diversity of mycotoxins produced by Fusarium graminearum and Fusarium avenaceum strains from weeds under field conditions. Regarding the potential for the strain dependence of mycotoxin production, this study demonstrated that all F. graminearum strains isolated from weeds and spring wheat showed high potential for deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), and nivalenol (NIV) production in spring wheat under field conditions. It was determined that F. graminearum is a typical producer of B-type trichothecenes. All strains of F. avenaceum isolated from spring wheat and weeds have the potential to produce enniatins and moniliformin in spring wheat. Each type of weed can host different Fusarium species and strains that produce completely different mycotoxins. Therefore, the distribution of mycotoxins in spring wheat grain may depend more on the Fusarium species or strains that infect the weeds than on the pathogen's host plant species. The predominance of specific mycotoxins in cereals depends on the year's weather conditions and the diversity of Fusarium species present in the field.
Collapse
Affiliation(s)
- Sigita Janaviciene
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Eimantas Venslovas
- Department of Plant Pathology and Protection, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Grazina Kadziene
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Neringa Matelioniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (Z.B.); (V.B.)
| | - Skaidre Suproniene
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
5
|
Feng L, Du Z, Zhang S, Zhang S, Meng Q, Tajovský K. Omnivorous Notoxus trinotatus Pic (Coleoptera: Anthicidae) is a newly recognized vector of northern leaf blight in maize. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21991. [PMID: 36533994 DOI: 10.1002/arch.21991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The adaptations of omnivorous insects to food are manifested in a multifaceted manner, and the availability of food resources directly determines insect feeding tendencies, which contribute to a complex insect-food relationship and impact insect functionality in the environment. Stable isotope analysis was applied to test the feeding preference and further define the functional role of omnivorous beetles in cropland. Our results confirmed that as an omnivorous beetle, the fungivorous nature of Notoxus trinotatus accounted for a prominent proportion food selection at the adult stage, and more importantly, this dietary feature contributed to the dispersal of the northern corn leaf blight in maize (NLB) during the feeding trials. In addition to the preference for fungi, water supplementation was an essential element extending adult longevity, which directly prolonged the contact time of adults with pathogenic fungi in agricultural fields. Consistent with the herbivorous characteristics of beetles, before the emergence of NLB fungal pathogens, corn tissues served as the main food, which provided the beetles with more opportunities to transmit fungal pathogen propagules. We conclude that the role of N. trinotatus in carrying NLB pathogen is due to its feeding on this plant mycopathogen, and an increased abundance of beetles carrying the pathogen may increase the rate of NLB disease infestation. More focus should be concentrated on the functions of fungivorous beetles, not only as pathogen-transmitting pests, but also as an element among the balanced biotic factors in farmland.
Collapse
Affiliation(s)
- Lichao Feng
- Department of Plant Protection, Jilin Agricultural Science and Technology University, Jilin, China
- Forestry College, Beihua University, Jilin, China
- Biology Centre, Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
| | - Zhiqi Du
- Forestry College, Beihua University, Jilin, China
| | - Shuang Zhang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shaoqing Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Qingfan Meng
- Forestry College, Beihua University, Jilin, China
| | - Karel Tajovský
- Biology Centre, Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Furusawa J, Makoto K, Utsumi S. A large-scale field experiment of artificially caused landslides with replications revealed the response of the ground-dwelling beetle community to landslides. Ecol Evol 2023; 13:e9939. [PMID: 36969925 PMCID: PMC10037431 DOI: 10.1002/ece3.9939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
Precipitation-induced landslides, which are predicted to increase under the changing climate, may have large impacts on insect community properties. However, understanding of how insect community properties shift following landslides remains limited because replicated research involving landslides, which are large-scale disturbances with stochastic natural causes, is difficult. To tackle this issue, we conducted a large-scale field experiment by artificially causing landslides at multiple sites. We established 12 landslide sites, each 35 m × 35 m, and 6 undisturbed sites in both planted and natural forests and collected ground-dwelling beetles 1 year later. We found that forest type (i.e., pre-disturbance vegetation) did not affect the structure of a ground-dwelling beetle community disturbed by a landslide (landslide community), but the structure of an undisturbed community was affected by forest type. Moreover, the structures of landslide and undisturbed communities were completely different, possibly because landslides create harsh environments that act as an ecological filter. Thus, a niche-selection process may have a critical role in community assembly at landslide sites. There were no significant differences in species diversity between undisturbed and landslide communities, suggesting that landslides to not reduce species richness overall. However, among-site variability in species composition was much greater at landslide sites than at undisturbed sites. This result suggests that stochastic colonization predominated at the landslide sites more than undisturbed sites. Synthesis and applications. Overall, our results suggest that both deterministic and stochastic processes are critical in community assembly, at least in the early post-landslide stage. Our large-scale manipulative field experiment with replications has thus resulted in new insights into biological community properties after a landslide.
Collapse
Affiliation(s)
- Jumpei Furusawa
- Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
| | - Kobayashi Makoto
- Nayoro Research Office, Field Science Center for Northern BiosphereHokkaido UniversityNayoroJapan
| | - Shunsuke Utsumi
- Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| |
Collapse
|
7
|
Gerling M, Petry L, Barkusky D, Büttner C, Müller MEH. Infected grasses as inoculum for Fusarium infestation and mycotoxin accumulation in wheat with and without irrigation. Mycotoxin Res 2022; 39:19-31. [PMID: 36282420 PMCID: PMC10156776 DOI: 10.1007/s12550-022-00470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
AbstractGrasses growing next to agricultural fields influence the Fusarium abundance, the species composition, and the mycotoxin accumulation of wheat plants, especially the field parts directly adjacent to grasses, are highly affected. Grasses are a more attractive and suitable habitat for Fusarium fungi compared to other arable weeds and occur at mostly every semi-natural landscape element (e.g., kettle holes, hedgerows, field-to-field-borders). In our study, we analyzed the ability of a highly Fusarium infected grass stripe (F. graminearum, F. culmorum, F. sporotrichioides) to infect an adjacent wheat field with these species. Results show that the primary inoculated Fusarium species were as well the dominant species isolated from the wheat field. Regarding transects originating from the grass stripe going into the field, the results demonstrate that wheat ears next to the infected grass stripe have a higher Fusarium abundance and furthermore show higher mycotoxin accumulation in the wheat kernels. This effect was highly promoted by irrigation. Therefore, grass stripes next to arable fields must be considered as reservoirs for fungal infections and as a source for a contamination with mycotoxins.
Collapse
Affiliation(s)
- Marina Gerling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Laura Petry
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Dietmar Barkusky
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Carmen Büttner
- Albrecht Daniel Thaer-Institute, Faculty of Life Science, Department of Phytomedicine, Humboldt-Universität Zu Berlin, 14195 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| |
Collapse
|