1
|
Kuroki M, Yaguchi T, Urayama SI, Hagiwara D. Experimental verification of strain-dependent relationship between mycovirus and its fungal host. iScience 2023; 26:107337. [PMID: 37520716 PMCID: PMC10372822 DOI: 10.1016/j.isci.2023.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Mycoviruses are viruses that infect fungi. Unlike mammalian infectious viruses, their life cycle does not generally have an extracellular stage, and a symbiosis-like relationship is maintained between virus and host fungi. Recently, mycoviruses have been reported to show effects on host fungi, altering biological properties such as growth rate, virulence, drug resistance, and metabolite production. In this study, we systematically elucidated the effects of viruses on host cells by comparing host phenotypes and transcriptomic responses in multiple sets of virus-infected and -eliminated Aspergillus flavus strains. The comparative study showed that mycoviruses affect several cellular activities at the molecular level in a virus- and host strain-dependent manner. The virus-swapping experiment revealed that difference with only three bases in the virus genome led to different host fungal response at the transcriptional level. Our results highlighted highly specific relationship between viruses and their host fungi.
Collapse
Affiliation(s)
- Misa Kuroki
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Inohana, Chou-ku, Chiba 260-8673, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Maud L, Boyer F, Durrieu V, Bornot J, Lippi Y, Naylies C, Lorber S, Puel O, Mathieu F, Snini SP. Effect of Streptomyces roseolus Cell-Free Supernatants on the Fungal Development, Transcriptome, and Aflatoxin B1 Production of Aspergillus flavus. Toxins (Basel) 2023; 15:428. [PMID: 37505697 PMCID: PMC10467112 DOI: 10.3390/toxins15070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Crop contamination by aflatoxin B1 (AFB1), an Aspergillus-flavus-produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from Streptomyces roseolus culture on the development of A. flavus, as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the S. roseolus CFS reduced the dry weight and conidiation of A. flavus from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.
Collapse
Affiliation(s)
- Louise Maud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Florian Boyer
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France;
| | - Julie Bornot
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Selma P. Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| |
Collapse
|
3
|
Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl Microbiol Biotechnol 2022; 107:299-312. [DOI: 10.1007/s00253-022-12296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
|
4
|
Biclot A, Huys GRB, Bacigalupe R, D’hoe K, Vandeputte D, Falony G, Tito RY, Raes J. Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. MICROBIOME 2022; 10:80. [PMID: 35644616 PMCID: PMC9150342 DOI: 10.1186/s40168-022-01267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Novel strategies for anaerobic bacterial isolations from human faecal samples and various initiatives to generate culture collections of gut-derived bacteria have instigated considerable interest for the development of novel microbiota-based treatments. Early in the process of building a culture collection, optimal faecal sample preservation is essential to safeguard the viability of the broadest taxonomic diversity range possible. In contrast to the much more established faecal storage conditions for meta-omics applications, the impact of stool sample preservation conditions on bacterial growth recovery and isolation remains largely unexplored. In this study, aliquoted faecal samples from eleven healthy human volunteers selected based on a range of physicochemical and microbiological gradients were cryopreserved at - 80 °C either without the addition of any medium (dry condition) or in different Cary-Blair medium conditions with or without a cryoprotectant, i.e. 20% (v/v) glycerol or 5% (v/v) DMSO. Faecal aliquots were subjected to bulk 16S rRNA gene sequencing as well as dilution plating on modified Gifu Anaerobic Medium after preservation for culturable fraction profiling and generation of bacterial culture collections. RESULTS Analyses of compositional variation showed that cryopreservation medium conditions affected quantitative recovery but not the overall community composition of cultured fractions. Post-preservation sample dilution and richness of the uncultured source samples were the major drivers of the cultured fraction richness at genus level. However, preservation conditions differentially affected recovery of specific genera. Presence-absence analysis indicated that twenty-two of the 45 most abundant common genera (>0.01% abundance, dilution 10-4) were recovered in cultured fractions from all preservation conditions, while nine genera were only detected in fractions from a single preservation condition. Overall, the highest number of common genera (i.e. 35/45) in cultured fractions were recovered from sample aliquots preserved without medium and in the presence of Cary-Blair medium containing 5% (v/v) DMSO. Also, in the culture collection generated from the cultured fractions, these two preservation conditions yielded the highest species richness (72 and 66, respectively). CONCLUSION Our results demonstrate that preservation methods partly determine richness and taxonomic diversity of gut anaerobes recovered from faecal samples. Complementing the current standard practice of cryopreserving stool samples in dry conditions with other preservation conditions, such as Cary-Blair medium with DMSO, could increase the species diversity of gut-associated culture collections. Video abstract.
Collapse
Affiliation(s)
- Anaïs Biclot
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Geert R. B. Huys
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Rodrigo Bacigalupe
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Kevin D’hoe
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Doris Vandeputte
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Present address: Meinig School of Biomedical Engineering, Cornell, USA
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
5
|
Influence of the ascarosides on the recovery, yield and dispersal of entomopathogenic nematodes. J Invertebr Pathol 2022; 188:107717. [PMID: 35031295 DOI: 10.1016/j.jip.2022.107717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Recovery, yield, and dispersal are crucial developmental and behavioral indices for the infective juveniles of entomopathogenic nematodes, which are used as biocontrol agents against a variety of agricultural pests. Ascarosides and isopropylstilbene (ISO) function as nematode pheromones with developmental and behavioral effects. In this study, 11 synthesized ascarosides identified from Caenorhabditis elegans, together with ISO identified from Photorhabdus luminescens, were used to determine their influence on the IJ recovery, growth on agar plates, and dispersal of S. carpocapsae All, H. bacteriophora H06 and H. indica LN2 nematodes. Compared with the controls, significant differences in IJ recovery of three nematode species were detected from the supernatants of their corresponding bacterial cultures with almost all ascarosides or isopropylstilbene (ISO) at 0.04 nM in 6 days. The highest IJ recovery percentages was obtained from ISO and ascr#3 for All strain, ascr#5 and ascr#6 for LN2 strain, and ISO and ascr#12 for H06 strain. The ISO detected from Photorhabdus bacteria also induced IJ recovery of S. carpocapsae All. IJ yields was significantly stimulated by all synthesized compounds for S. carpocapsae All, and by most compounds for H. bacteriophora H06. The higher IJ yields varied with ascarosides. Ascr#7 and DMSO was common for the improved IJ yields of both nematode species. The three nematode species showed marked differences in dispersal behavior. In response to the ascarosides or ISO, S. carpocapsae All IJs actively moved with different dispersal rates, H. indica LN2 IJs in very low dispersal rates, and H. bacteriophora H06 IJs in variable and even suppressed rates on the agar plates at least during the assay period. Based on the synthesized standards, ascr#1, ascr#9 and ascr#10 were detected from three nematode species, ascr#5 and ascr#11 also from S. carpocapsae All and H. bacteriophora H06, and ascr#12 also from H. bacteriophora H06 and H. indica LN2. Ascr#9 was most abundant in three nematode species. Compared with the sterile PBS, significantly more ascr#1, ascr#9 and ascr#10 were detected from S. carpocapsae All and H. indica LN2, but less ascr#5 and ascr#11 from S. carpocapsae All, ascr#1, ascr#5, ascr#11 and ascr#12 from H. bacteriophora H06, in the corresponding bacterial supernatant. It seems that the bacterial supernatants could regulate the ascaroside secretion by the three nematode species. These results will provide useful clues for selecting suitable ascarosides to induce the recovery, improve the yield, and enhance the dispersal of the IJs of these nematodes.
Collapse
|