1
|
Zhao Y, Ran W, Xu W, Song Y. ITS amplicon sequencing revealed that rare taxa of tea rhizosphere fungi are closely related to the environment and provide feedback on tea tree diseases. Microbiol Spectr 2025; 13:e0188924. [PMID: 39612478 PMCID: PMC11705919 DOI: 10.1128/spectrum.01889-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024] Open
Abstract
The rhizospheres of plants and soil microorganisms are intricately interconnected. Tea trees are cultivated extensively on the karst plateau of Guizhou Province, China; however, the understanding of the interactions among fungal communities, community taxa, and diseases impacting tea tree in the soil rhizosphere is limited. Our aim is to offer insights for the advancement of modern agriculture in ecologically fragile karst tea gardens, as well as microbiomics concepts for green and sustainable environmental development. This study utilized the internal transcribed spacer high-throughput sequencing technology to explore the symbiotic relationship between rhizosphere fungi and plant disease feedback in multiple tea estates across the Guizhou Plateau. The ecological preferences and environmental thresholds of fungi were investigated via environmental variables. Furthermore, a correlation was established between different taxa and individual soil functions. Research has indicated that tea leaf blight disrupts symbiotic connections among fungal groups. For various taxa, we found that numerous taxa consistently maintained core positions within the community, whereas rare taxa were able to stabilize due to a high proportion of positive effects. Additionally, abundant taxa presented a wider range of environmental feedback, whereas the rare taxon diversity presented a stronger positive association with the soil Z score. This study contributes to our understanding of the importance of rare taxa in plant rhizosphere soil processes. Emphasis should be placed on the role of rare taxa in pest and disease control within green agriculture while also strengthening systematic development and biogeographical research related to rare taxa in this region.IMPORTANCEIn this study, based on internal transcribed spacer high-throughput sequencing, fungal communities in the rhizosphere soil of tea trees and their interactions with the environment in karst areas were reported, and the symbiotic relationships of different fungal taxa and their feedback to the environment were described in detail by using the knowledge of microbial ecology. On this basis, it was found that tea tree diseases affect the symbiotic relationships of fungal taxa. At the same time, we found that rare taxa have stronger cooperative relationships in response to environmental changes and explored their participation in soil processes based on fungal trait sets. This study will provide basic data for the development of modern agriculture in tea gardens and theoretical basis for the sustainable prevention and control of tea tree diseases.
Collapse
Affiliation(s)
- Yuanqi Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Weiwei Ran
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Wenming Xu
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| |
Collapse
|
2
|
Liu S, Chou MY, Benucci GMN, Eudes A, Bonito G. Genetic modification of the shikimate pathway to reduce lignin content in switchgrass ( Panicum virgatum L.) significantly impacts plant microbiomes. Microbiol Spectr 2025; 13:e0154624. [PMID: 39589120 PMCID: PMC11705929 DOI: 10.1128/spectrum.01546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Switchgrass (Panicum virgatum L.) is considered a sustainable biofuel feedstock, given its fast-impact growth, low input requirements, and high biomass yields. Improvements in bioenergy conversion efficiency of switchgrass could be made by reducing its lignin content. Engineered switchgrass that expresses a bacterial 3-dehydroshikimate dehydratase (QsuB) has reduced lignin content and improved biomass saccharification due to the rerouting of the shikimate pathway towards the simple aromatic protocatechuate at the expense of lignin biosynthesis. However, the impacts of this QsuB trait on switchgrass microbiome structure and function remain unclear. To address this, wild-type and QsuB-engineered switchgrass were grown in switchgrass field soils, and samples were collected from inflorescences, leaves, roots, rhizospheres, and bulk soils for microbiome analysis. We investigated how QsuB expression influenced switchgrass-associated fungal and bacterial communities using high-throughput Illumina MiSeq amplicon sequencing of ITS and 16S rDNA. Compared to wild-type, QsuB-engineered switchgrass hosted different microbial communities in roots, rhizosphere, and leaves. Specifically, QsuB-engineered plants had a lower relative abundance of arbuscular mycorrhizal fungi (AMF). Additionally, QsuB-engineered plants had fewer Actinobacteriota in root and rhizosphere samples. These findings may indicate that changes in the plant metabolism impact both AMF and Actinobacteriota similarly or potential interactions between AMF and the bacterial community. This study enhances understanding of plant-microbiome interactions by providing baseline microbial data for developing beneficial bioengineering strategies and by assessing nontarget impacts of engineered plant traits on the plant microbiome. IMPORTANCE Bioenergy crops provide an important strategy for mitigating climate change. Reducing the lignin in bioenergy crops could improve fermentable sugar yields for more efficient conversion into bioenergy and bioproducts. In this study, we assessed how switchgrass engineered for low lignin impacted aboveground and belowground switchgrass microbiome. Our results show unexpected reductions in mycorrhizas and actinobacteria in belowground tissues, raising questions on the resilience and function of genetically engineered plants in agricultural systems.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Ming-Yi Chou
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Gian Maria Niccolò Benucci
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Aymerick Eudes
- DOE Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Wang X, Zhang Y, Li J, Ding Y, Ma X, Zhang P, Liu H, Wei J, Bao Y. Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems. J Fungi (Basel) 2025; 11:30. [PMID: 39852449 PMCID: PMC11766765 DOI: 10.3390/jof11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on. Therefore, investigating the diversity and composition of endophytic fungi in halophytes is crucial for maintaining ecological balance in such an arid environment. This study focuses on eight representative angiosperm halophytes from the West Ordos Desert in China (including Nitraria tangutorum, Salsola passerina, Suaeda glauca, Reaumuria trigyna, Reaumuria kaschgarica, Limonium aureum, Apocynum venetum, and Tripolium vulgare), utilizing Illumina MiSeq high-throughput sequencing technology combined with soil physicochemical factor data to analyze the diversity, composition, and ecological functions of their root-associated fungal communities. Ascomycota dominated the fungal composition in most halophytes, particularly among the recretohalophytes, where it accounted for an average of 88.45%, while Basidiomycota was predominant in Suaeda glauca. A Circos analysis of the top 10 most abundant genera revealed Fusarium, Dipodascus, Curvularia, Penicillium, and other dominant genera. Co-occurrence network analysis showed significant differences in fungal networks across halophyte types, with the most complex network observed in excreting halophytes, characterized by the highest number of nodes and connections, indicating tighter fungal symbiotic relationships. In contrast, fungal networks in pseudohalophytes were relatively simple, reflecting lower community cohesiveness. Redundancy analysis (RDA) and Mantel tests demonstrated that soil factors such as organic matter, available sulfur, and urease significantly influenced fungal diversity, richness, and evenness, suggesting that soil physicochemical properties play a critical role in regulating fungal-plant symbiosis. Functional predictions indicated that endophytic fungi play important roles in metabolic pathways such as nucleotide biosynthesis, carbohydrate degradation, and lipid metabolism, which may enhance plant survival in saline-alkaline and arid environments. Furthermore, the high abundance of plant pathogens and saprotrophs in some fungal communities suggests their potential roles in plant defense and organic matter decomposition. The results of this study provide a reference for advancing the development and utilization of halophyte endophytic fungal resources, with applications in desert ecosystem restoration and halophyte cultivation.
Collapse
Affiliation(s)
- Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yiteng Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Peng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jie Wei
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| |
Collapse
|
4
|
Liao F, He J, Li R, Hu Y. Endophytic Fungus UJ3-2 from Urtica fissa: Antibacterial Activity and Mechanism of Action against Staphylococcus aureus. Molecules 2024; 29:4850. [PMID: 39459217 PMCID: PMC11510654 DOI: 10.3390/molecules29204850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Taking the endophytic fungus UJ3-2, isolated from Urtica fissa, as the experimental material, this study aimed to explore the composition of its metabolites and the underlying mechanisms by which it inhibits Staphylococcus aureus. Initially, the MIC, MBC, inhibitory curves, biofilm growth, and extracellular nucleic acids and proteins of S. aureus in response to the metabolites were measured. Secondly, PI staining and SEM were used to evaluate the impact of the metabolites on the integrity of the cell wall and overall morphology of S. aureus. Additionally, UPLC-MS was employed to analyze the composition of the secondary metabolites. The UJ3-2 strain was identified as Xylaria grammica based on ITS sequencing and designated as Xylaria grammica UJ3-2. Our results revealed that the metabolites of UJ3-2 exhibited excellent in vitro antibacterial activity against S. aureus, with both MIC and MBC values of 3.125 mg/mL. The inhibitory curve confirmed that 1 MIC of UJ3-2 metabolites could completely inhibit the growth of S. aureus within 24 h. With increasing concentrations of UJ3-2 metabolites, the growth of S. aureus biofilms was significantly suppressed, and obvious leakage of nucleic acids and proteins was observed. PI fluorescence staining indicated that various concentrations of UJ3-2 metabolites disrupted the integrity of the S. aureus cell membrane. SEM observation revealed that the treated S. aureus surfaces became rough, and the bacteria shrank and adhered to each other, showing a dose-dependent effect. UPLC-MS analysis suggested that the main components of the fermented metabolites were 6-oxocineole (17.92%), (S)-2-acetolactate (9.91%), 3-methyl-cis,cis-muconate (4.36%), and 8-oxogeranial (3.17%). This study demonstrates that the endophytic fungus UJ3-2 exhibits remarkable in vitro antibacterial effects against S. aureus, primarily by enhancing the permeability of the S. aureus cell membrane, causing the leakage of its intracellular contents, and altering the bacterial surface morphology to inhibit the pathogen. The endophytic fungus UJ3-2 has a good antibacterial effect on S. aureus, which gives it certain application prospects in the screening and industrial production of new and efficient natural antibacterial active substances.
Collapse
Affiliation(s)
- Fei Liao
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie He
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Renjun Li
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Huang T, Carrizo D, Sánchez-García L, Hu Q, Anglés A, Gómez-Ortiz D, Yu LL, Fernández-Remolar DC. The Molecular Profile of Soil Microbial Communities Inhabiting a Cambrian Host Rock. Microorganisms 2024; 12:513. [PMID: 38543564 PMCID: PMC10975187 DOI: 10.3390/microorganisms12030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 11/12/2024] Open
Abstract
The process of soil genesis unfolds as pioneering microbial communities colonize mineral substrates, enriching them with biomolecules released from bedrock. The resultant intricate surface units emerge from a complex interplay among microbiota and plant communities. Under these conditions, host rocks undergo initial weathering through microbial activity, rendering them far from pristine and challenging the quest for biomarkers in ancient sedimentary rocks. In addressing this challenge, a comprehensive analysis utilizing Gas Chromatography Mass Spectrometry (GC-MS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was conducted on a 520-Ma-old Cambrian rock. This investigation revealed a diverse molecular assemblage with comprising alkanols, sterols, fatty acids, glycerolipids, wax esters, and nitrogen-bearing compounds. Notably, elevated levels of bacterial C16, C18 and C14 fatty acids, iso and anteiso methyl-branched fatty acids, as well as fungal sterols, long-chained fatty acids, and alcohols, consistently align with a consortium of bacteria and fungi accessing complex organic matter within a soil-type ecosystem. The prominence of bacterial and fungal lipids alongside maturity indicators denotes derivation from heterotrophic activity rather than ancient preservation or marine sources. Moreover, the identification of long-chain (>C22) n-alkanols, even-carbon-numbered long chain (>C20) fatty acids, and campesterol, as well as stigmastanol, provides confirmation of plant residue inputs. Furthermore, findings highlight the ability of contemporary soil microbiota to inhabit rocky substrates actively, requiring strict contamination controls when evaluating ancient molecular biosignatures or extraterrestrial materials collected.
Collapse
Affiliation(s)
- Ting Huang
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; (T.H.)
- CNSA Macau Center for Space Exploration and Science, Macau 999078, China
| | - Daniel Carrizo
- Centro de Astrobiología (INTA-CSIC), 28850 Madrid, Spain; (D.C.); (L.S.-G.)
| | | | - Qitao Hu
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; (T.H.)
- CNSA Macau Center for Space Exploration and Science, Macau 999078, China
| | - Angélica Anglés
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA;
| | - David Gómez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Liang-Liang Yu
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; (T.H.)
- Institute of Science and Technology for Deep Space Exploration, Nanjing University, Suzhou Campus, Suzhou 215163, China
| | - David C. Fernández-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; (T.H.)
- CNSA Macau Center for Space Exploration and Science, Macau 999078, China
- Carl Sagan Center, The SETI Institute, Mountain View, CA 94043, USA
| |
Collapse
|
6
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Bhardwaj L, Reddy B, Dubey SK. Deciphering insights into rhizospheric microbial community and soil parameters under the influence of herbicides in zero-tillage tropical rice-agroecosystem. ENVIRONMENTAL RESEARCH 2023; 237:117033. [PMID: 37660873 DOI: 10.1016/j.envres.2023.117033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Extensive use of chemicals like herbicides in rice and other fields to manage weeds is expected to have a lasting influence on the soil environment. Considering this rationale, we aimed to decipher the effects of herbicides, Pendimethalin and Pretilachlor, applied at 0.5 and 0.6 kg ha-1, respectively on the rhizosphere microbial community and soil characteristics in the tropical rice field, managed under zero tillage cultivation. The quantity of herbicide residues declined gradually since application up to 60 days thereafter it reached the non-detectable level. Most of the soil variables viz., microbial biomass, soil enzymes etc., exhibited slight reduction in the treated soils compared to the control. A gradual decline was observed in Mineral-N, MBC, MBN and enzyme activities. Quantitative polymerase chain reaction results showed maximal microbial abundance of bacteria, fungi and archaea at mid-flowering stage of rice crop. The 16 rRNA and ITS region targeted amplicons high throughput sequencing microbial metagenomic approach revealed total of 94, 1353, and 510 species for archaea, bacteria and fungi, respectively. The metabarcoding of core microbiota revealed that the archaea comprised of Nitrososphaera, Nitrosocosmicus, and Methanosarcina. In the bacterial core microbiome, Neobacillus, Nitrospira, Thaurea, and Microvigra were found as the predominant taxa. Fusarium, Clonostachys, Nigrospora, Mortierella, Chaetomium, etc., were found in core fungal microbiome. Overall, the study exhibited that the recommended dose of herbicides found to be detrimental to the microbial dynamics, though a negative relation between residues and soil variables was observed that might alter the microbial diversity. The outcomes offer a comprehensive understanding of how herbicides affect the microbial community in zero tillage rice soil, thus has a critical imputation for eco-friendly and sustainable rice agriculture. Further, the long-term studies will be helpful in elucidating the role of identified microbial groups in sustaining the soil fertility and crop productivity.
Collapse
Affiliation(s)
- Laliteshwari Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Bhaskar Reddy
- Virus Research and Diagnostic Laboratory, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh-9, 201310, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
9
|
Wen J, Okyere SK, Wang J, Huang R, Wang Y, Liu L, Nong X, Hu Y. Endophytic Fungi Isolated from Ageratina adenophora Exhibits Potential Antimicrobial Activity against Multidrug-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:650. [PMID: 36771733 PMCID: PMC9920656 DOI: 10.3390/plants12030650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria such as Staphylococcus aureus (MRSA) cause infections that are difficult to treat globally, even with current available antibiotics. Therefore, there is an urgent need to search for novel antibiotics to tackle this problem. Endophytes are a potential source of novel bioactive compounds; however, the harnessing of novel pharmacological compounds from endophytes is infinite. Therefore, this study was designed to identify endophytic fungi (from Ageratina adenophora) with antibacterial activity against multidrug-resistant bacteria. Using fungal morphology and ITS-rDNA, endophytic fungi with antibacterial activities were isolated from A. adenophora. The results of the ITS rDNA sequence analysis showed that a total of 124 morphotype strains were identified. In addition, Species richness (S, 52), Margalef index (D/, 7.3337), Shannon-Wiener index (H/,3.6745), and Simpson's diversity index (D, 0.9304) showed that A. adenophora have abundant endophytic fungi resources. Furthermore, the results of the agar well diffusion showed that the Penicillium sclerotigenum, Diaporthe kochmanii, and Pestalotiopsis trachycarpicola endophytic fungi's ethyl acetate extracts showed moderate antibacterial and bactericidal activities, against methicillin-resistant Staphylococcus aureus (MRSA) SMU3194, with a MIC of 0.5-1 mg/mL and a MBC of 1-2 mg/mL. In summary, A. adenophora contains endophytic fungi resources that can be pharmacologically utilized, especially as antibacterial drugs.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen 518000, China
| |
Collapse
|
10
|
Kong K, Huang Z, Shi S, Pan W, Zhang Y. Diversity, antibacterial and phytotoxic activities of culturable endophytic fungi from Pinellia pedatisecta and Pinellia ternata. BMC Microbiol 2023; 23:30. [PMID: 36707757 PMCID: PMC9883868 DOI: 10.1186/s12866-022-02741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Endophytic fungi of medicinal plants, as special microorganisms, are important sources of antibacterial compounds. However, the diversity and antibacterial activity of endophytic fungi from Pinellia Tenore have not been systematically studied. RESULTS A total of 77 fungi were isolated from roots, stems, leaves, and tubers of Pinellia ternata and P. pedatisecta. All fungi were belonged to five classes and twenty-five different genera. Biological activities tests indicated that 21 extracts of endophytic fungi exhibited antibacterial activities against at least one of the tested bacteria, and 22 fermentation broth of endophytic fungi showed strong phytotoxic activity against Echinochloa crusgalli with the inhibition rate of 100%. Furthermore, four compounds, including alternariol monomethyl ether (1), alternariol (2), dehydroaltenusin (3) and altertoxin II (4), and three compounds, including terreic acid (5), terremutin (6), citrinin (7), were isolated from Alternaria angustiovoidea PT09 of P. ternata and Aspergillus floccosus PP39 of P. pedatisecta, respectively. Compound 5 exhibited strong antibacterial activities against Escherichia coli, Micrococcus tetragenus, Staphylococcus aureus, and Pseudomonas syringae pv. actinidiae with the inhibition zone diameter (IZD) of 36.0, 31.0, 33.7, 40.2 mm and minimum inhibitory concentration (MIC) values of 1.56, 3.13, 1.56, 1.56 μg/mL respectively, which were better than or equal to those of positive gentamicin sulfate. The metabolite 7 also exhibited strong antibacterial activity against P. syringae pv. actinidiae with the IZD of 26.0 mm and MIC value of 6.25 μg/mL. In addition, the compound 7 had potent phytotoxic activity against E. crusgalli with the inhibition rate of 73.4% at the concentration of 100 μg/mL. CONCLUSIONS Hence, this study showed that endophytic fungi of P. ternata and P. pedatisecta held promise for the development of new antibiotic and herbicide resources.
Collapse
Affiliation(s)
- Kun Kong
- grid.411389.60000 0004 1760 4804School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Zhongdi Huang
- grid.411389.60000 0004 1760 4804School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Shuping Shi
- grid.411389.60000 0004 1760 4804School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Weidong Pan
- grid.413458.f0000 0000 9330 9891State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014 China
| | - Yinglao Zhang
- grid.411389.60000 0004 1760 4804School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
11
|
Hammam MMA, Abd-El-Khair H, El-Nagdi WMA, Abd-Elgawad MMM. Can Agricultural Practices in Strawberry Fields Induce Plant-Nematode Interaction towards Meloidogyne-Suppressive Soils? Life (Basel) 2022; 12:life12101572. [PMID: 36295007 PMCID: PMC9605673 DOI: 10.3390/life12101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/17/2023] Open
Abstract
The importance of benign approaches to manage the root-knot nematodes (RKNs, Meloidogyne spp.) in strawberry farms has become more evident with increasing strawberry production and export in Egypt. Therefore, data accumulated on biosolarization and soil amendments to favor beneficial microorganisms and maximize their impact on RKN management are built on a robust historical research foundation and should be exploited. We examined RKN population levels/parameters in three strawberry export governorates, six farms per governorate, to characterize the exact production practices that are responsible for RKN-suppressive soils. All selected farms enjoyed soil biodisinfestation resulting from incorporating organic amendments followed by a plastic cover to suppress soil pathogens. Various safe and inexpensive agricultural practices in the El-Ismailia and El-Beheira governorates were compared to the toxic and expensive fumigants that could eliminate RKNs in the Al-Qalyubia governorate. Two farms at El-Ismailia were of special interest as they ultimately showed almost zero counts of RKNs. The two farms were characterized by incorporating cow manure [containing 0.65% total nitrogen, 21.2 carbon to nitrogen (C/N) ratio] and poultry manure (0.72% total nitrogen, 20.1 C/N ratio) followed by soil solarization via transparent, 80-µm thick plastic covers for 60−65 summer days as pre-strawberry cultivation practices, and similar covers were used after transplanting. Typically, the longer the pre-plant soil solarization period with thicker transparent plastic covers, the better it could suppress the RKN population densities in the tested farms. Their soils were characterized by relatively high pH and low electrical conductivity. The significant development in biocontrol genera/species abundance and frequency could explain the lower (p < 0.0001) RKN population levels inhabiting the farms of El-Ismailia than the El-Beheira governorate. These factors could provide the first approximation of key practices and factors that could collectively contribute to distinguishing and exploiting soil suppressiveness against RKNs. We discussed edaphic properties and production practices that could modulate populations of natural RKN antagonists for sustainable strawberry cultivation.
Collapse
|
12
|
Zuo YL, Hu QN, Qin L, Liu JQ, He XL. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:933738. [PMID: 36160950 PMCID: PMC9490189 DOI: 10.3389/fpls.2022.933738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.
Collapse
Affiliation(s)
- Yi-Ling Zuo
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Qian-Nan Hu
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Qin
- School of Life Sciences, Hebei University, Baoding, China
| | - Jia-Qiang Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Xue-Li He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|