1
|
Cai E, Deng J, Feng R, Zheng W, Wang Y, Yan M, Chang C. SsCyp86 modulates sporisorium scitamineum mating/filamentation and pathogenicity through regulating fatty acid metabolism. Virulence 2024; 15:2395833. [PMID: 39177034 PMCID: PMC11352786 DOI: 10.1080/21505594.2024.2395833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiaru Deng
- Laboratory of Plant Protection, Guangzhou Institute Forestry and Landscape Architecture, Guangzhou, China
| | - Ruqing Feng
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Wenqiang Zheng
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yifang Wang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Liu Z, Yu Z, Li X, Cheng Q, Li R. Two Sugarcane Expansin Protein-Coding Genes Contribute to Stomatal Aperture Associated with Structural Resistance to Sugarcane Smut. J Fungi (Basel) 2024; 10:631. [PMID: 39330391 PMCID: PMC11433316 DOI: 10.3390/jof10090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for inducing sugarcane smut disease that results in significant reductions in sugarcane yield. Resistance mechanisms against sugarcane smut can be categorized into structural, biochemical, and physiological resistance. However, structural resistance has been relatively understudied. This study found that sugarcane variety ZZ9 displayed structural resistance compared to variety GT42 when subjected to different inoculation methods for assessing resistance to smut disease. Furthermore, the stomatal aperture and density of smut-susceptible varieties (ROC22 and GT42) were significantly higher than those of smut-resistant varieties (ZZ1, ZZ6, and ZZ9). Notably, S. scitamineum was found to be capable of entering sugarcane through the stomata on buds. According to the RNA sequencing of the buds of GT42 and ZZ9, seven Expansin protein-encoding genes were identified, of which six were significantly upregulated in GT42. The two genes c111037.graph_c0 and c113583.graph_c0, belonging to the α-Expansin and β-Expansin families, respectively, were functionally characterized, revealing their role in increasing the stomatal aperture. Therefore, these two sugarcane Expansin protein-coding genes contribute to the stomatal aperture, implying their potential roles in structural resistance to sugarcane smut. Our findings deepen the understanding of the role of the stomata in structural resistance to sugarcane smut and highlight their potential in sugarcane breeding for disease resistance.
Collapse
Affiliation(s)
- Zongling Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zhuoxin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiufang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qin Cheng
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Guo F, Meng J, Huang J, Yang Y, Lu S, Chen B. An efficient inoculation method to evaluate virulence differentiation of field strains of sugarcane smut fungus. Front Microbiol 2024; 15:1355486. [PMID: 38650878 PMCID: PMC11033459 DOI: 10.3389/fmicb.2024.1355486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Sugarcane smut, caused by the fungal pathogen Sporisorium scitamineum, is a prominent threat to the sugarcane industry. The development of smut resistant varieties is the ultimate solution for controlling this disease, due to the lack of other efficient control methods. Artificial inoculation method is used to evaluate the virulence differentiation of pathogens. The mostly used artificial inoculation methods are soaking of the seed canes in the teliospore solution and injection of teliospores or haploid sporidia into the sugarcane sprouts. However, due to the infection nature of the pathogen that invades the sugarcane plant through meristem tissue of the sprout or shoot, the rate of successful infection is often low and fluctuated, resulting in low confidence of the assays. We recently reported a rapid and high-throughput inoculation method called plantlet soaking by using tissue culture-derived sugarcane plantlets as the test plants. Here, we compare different inoculation methods and report the characterization of parameters that may affect the sensitivity and efficiency of the plantlet soaking technique. The results showed that sugarcane plantlets were highly vulnerable to infection, even with the inoculum density at 6.0 × 105 basidial spores/ml, and this method could be applied to all varieties tested. Notably, varieties showing high smut resistance in the field exhibited high susceptibility when inoculated with the plantlet soaking method, suggesting that the plantlet soaking method is a good complement to the traditional methods for screening germplasms with internal resistance. In addition, this method could also be used to monitor the variation of cellular virulence of the smut pathogen strains in the field.
Collapse
Affiliation(s)
- Feng Guo
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning, China
| | - Ji Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, China
| | - Yanfang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University, Nanning, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Yin S, Huang M, Wang J, Liu B, Ren Q. Microbial Community Dynamics and the Correlation between Specific Bacterial Strains and Higher Alcohols Production in Tartary Buckwheat Huangjiu Fermentation. Foods 2023; 12:2664. [PMID: 37509756 PMCID: PMC10379207 DOI: 10.3390/foods12142664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat as the raw material and wheat Qu as the starter culture. Microbial community dynamics analysis indicated that the bacterial diversity initially decreased rapidly to a lower level and then increased and maintained at a higher level during fermentation. Lactococcus was the dominant bacteria and Ralstonia, Acinetobacter, Cyanobacteria, and Oxalobacteraceae were the bacterial genera with higher abundances. In sharp contrast, only 13 fungal genera were detected during fermentation, and Saccharomyces showed the dominant abundance. Moreover, 18 higher alcohol compounds were detected by GC-MS during fermentation. Four compounds (2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol) were stably detected with high concentrations during fermentation. The compound 2-ethyl-2-methyl-tridecanol was detected to be of the highest concentration in the later period of fermentation. Correlation analysis revealed that the generation of 2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol were positively correlated with Granulicatella and Pelomonas, Bacteroides, Pseudonocardia and Pedomicrobium, and Corynebacterium, respectively. The verification fermentation experiments indicated that the improved wheat Qu QT3 and QT4 inoculated with Granulicatella T3 and Acidothermus T4 led to significant increases in the contents of 2-phenylethanol and pentanol, as well as isobutanol and isopentanol, respectively, in the Tartary buckwheat Huangjiu. The findings benefit understanding of higher alcohols production and flavor formation mechanisms in Huangjiu fermentation.
Collapse
Affiliation(s)
- Sheng Yin
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Jiaxuan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Bo Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
5
|
Identification of Gene Modules and Hub Genes Associated with Sporisorium scitamineum Infection Using Weighted Gene Co-Expression Network Analysis. J Fungi (Basel) 2022; 8:jof8080852. [PMID: 36012840 PMCID: PMC9409688 DOI: 10.3390/jof8080852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for sugarcane smut disease. To investigate the key genes involved in S. scitamineum infection, we conducted RNA sequencing of sugarcane sprouts inoculated with S. scitamineum teliospores. A weighted gene co-expression network analysis (WGCNA) showed that two co-expressed gene modules, MEdarkturquoise and MEpurple—containing 66 and 208 genes, respectively—were associated with S. scitamineum infection. The genes in these two modules were further studied using Gene Ontology (GO) enrichment analysis, pathogen-host interaction (PHI) database BLASTp, and small secreted cysteine-rich proteins (SCRPs) prediction. The top ten hub genes in each module were identified using the Cytohubba plugin. The GO enrichment analysis found that endoplasmic reticulum-related and catabolism-related genes were expressed during S. scitamineum infection. A total of 83 genes had homologs in the PHI database, 62 of which correlated with pathogen virulence. A total of 21 proteins had the characteristics of small secreted cysteine-rich proteins (SCRPs), a common source of fungal effectors. The top ten hub genes in each module were identified, and seven were annotated as Mig1-Mig1 protein, glycosyl hydrolase, beta-N-acetylglucosaminidase, secreted chorismate mutase, collagen, mRNA export factor, and pleckstrin homology domain protein, while the remaining three were unknown. Two SCRPs—SPSC_06609 and SPSC_04676—and three proteins—SPSC_01958, SPSC_02155, and SPSC_00940—identified in the PHI database were also among the top ten hub genes in the MEdarkturquoise and MEpurple modules, suggesting that they may play important roles in S. scitamineum infection. A S. scitamineum infection model was postulated based on current findings. These findings help to deepen the current understanding of early events in S. scitamineum infection.
Collapse
|