1
|
Bočaj V, Pongrac P, Grčman H, Šala M, Likar M. Rhizobiome diversity of field-collected hyperaccumulating Noccaea sp. BMC PLANT BIOLOGY 2024; 24:922. [PMID: 39358696 PMCID: PMC11448065 DOI: 10.1186/s12870-024-05605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
- Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| | - Helena Grčman
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
2
|
Sui J, Wang C, Ren C, Hou F, Zhang Y, Shang X, Zhao Q, Hua X, Liu X, Zhang H. Effects of Deep Tillage on Wheat Regarding Soil Fertility and Rhizosphere Microbial Community. Microorganisms 2024; 12:1638. [PMID: 39203480 PMCID: PMC11356293 DOI: 10.3390/microorganisms12081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat production is intrinsically linked to global food security. However, wheat cultivation is constrained by the progressive degradation of soil conditions resulting from the continuous application of fertilizers. This study aimed to examine the effects of deep tillage on rhizosphere soil microbial communities and their potential role in improving soil quality, given that the specific mechanisms driving these observed benefits remain unclear. Soil fertility in this research was evaluated through the analysis of various soil parameters, including total nitrogen, total phosphorus, total potassium, available phosphorus, and available potassium, among others. The high-throughput sequencing technique was utilized to examine the rhizosphere microbial community associated with deep tillage wheat. The findings indicated that deep tillage cultivation of wheat led to reduced fertility levels in the 0-20 cm soil layer in comparison with non-deep tillage cultivation. A sequencing analysis indicated that Acidobacteria and Proteobacteria are the dominant bacterial phyla, with Proteobacteria being significantly more abundant in the deep tillage group. The dominant fungal phyla identified were Ascomycota, Mortierellomycota, and Basidiomycota. Among bacterial genera, Arthrobacter, Bacillus, and Nocardioides were predominant, with Arthrobacter showing a significantly higher presence in the deep tillage group. The predominant fungal genera included Mortierella, Alternaria, Schizothecium, and Cladosporium. Deep tillage cultivation has the potential to enhance soil quality and boost crop productivity through the modulation of soil microbial community structure.
Collapse
Affiliation(s)
- Junkang Sui
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Chenyu Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Changqing Ren
- Liaocheng Science and Technology Bureau, Liaocheng 252000, China;
| | - Feifan Hou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Yuxuan Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Xueting Shang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Qiqi Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Xuewen Hua
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| | - Xunli Liu
- College of Forestry, Shandong Agricultural University, Tai’an 271000, China;
| | - Hengjia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (C.W.); (F.H.); (Y.Z.); (X.S.); (Q.Z.); (X.H.)
| |
Collapse
|
3
|
Likar M, Grašič M, Stres B, Regvar M, Gaberščik A. Metagenomics reveals effects of fluctuating water conditions on functional pathways in plant litter microbial community. Sci Rep 2023; 13:21741. [PMID: 38066117 PMCID: PMC10709317 DOI: 10.1038/s41598-023-49044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Climate change modifies environmental conditions, resulting in altered precipitation patterns, moisture availability and nutrient distribution for microbial communities. Changes in water availability are projected to affect a range of ecological processes, including the decomposition of plant litter and carbon cycling. However, a detailed understanding of microbial stress response to drought/flooding is missing. In this study, an intermittent lake is taken up as a model for changes in water availability and how they affect the functional pathways in microbial communities of the decomposing Phragmites australis litter. The results show that most enriched functions in both habitats belonged to the classes of Carbohydrates and Clustering-based subsystems (terms with unknown function) from SEED subsystems classification. We confirmed that changes in water availability resulted in altered functional makeup of microbial communities. Our results indicate that microbial communities under more frequent water stress (due to fluctuating conditions) could sustain an additional metabolic cost due to the production or uptake of compatible solutes to maintain cellular osmotic balance. Nevertheless, although prolonged submergence seemed to have a negative impact on several functional traits in the fungal community, the decomposition rate was not affected.
Collapse
Affiliation(s)
- Matevž Likar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Mateja Grašič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Blaž Stres
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Biocybernetics and Robotics, Department of Automation, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Regvar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Alenka Gaberščik
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
Luo L, Tao G, Qin F, Luo B, Liu J, Xu A, Li W, Hu Y, Yi Y. Phosphate-solubilizing fungi enhances the growth of Brassica chinensis L. and reduces arsenic uptake by reshaping the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120805-120819. [PMID: 37945954 DOI: 10.1007/s11356-023-30359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil β-glucosidase (β-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.
Collapse
Affiliation(s)
- Lin Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Fanxin Qin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China.
| | - Banglin Luo
- College of Resources and Environment/Key Laboratory of Eco-Environment in Three Gorges Region (Ministry of Education), Southwest University, Chongqing, 400716, China
| | - Jing Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Anqi Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Wanyu Li
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yanjiao Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
5
|
Maj W, Pertile G, Frąc M. Soil-Borne Neosartorya spp.: A Heat-Resistant Fungal Threat to Horticulture and Food Production-An Important Component of the Root-Associated Microbial Community. Int J Mol Sci 2023; 24:1543. [PMID: 36675060 PMCID: PMC9867472 DOI: 10.3390/ijms24021543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Soil-borne Neosartorya spp. are the highly resilient sexual reproductive stage (teleomorph) of Aspergillus spp. Fungi of this genus are relevant components of root-associated microbial community, but they can also excrete mycotoxins and exhibit great resistance to high temperatures. Their ascospores easily transfer between soil and crops; thus, Neosartorya poses a danger to horticulture and food production, especially to the postharvest quality of fruits and vegetables. The spores are known to cause spoilage, mainly in raw fruit produce, juices, and pulps, despite undergoing pasteurization. However, these fungi can also participate in carbon transformation and sequestration, as well as plant protection in drought conditions. Many species have been identified and included in the genus, and yet some of them create taxonomical controversy due to their high similarity. This also contributes to Neosartorya spp. being easily mistaken for its anamorph, resulting in uncertain data within many studies. The review discusses also the factors shaping Neosartorya spp.'s resistance to temperature, preservatives, chemicals, and natural plant extracts, as well as presenting novel solutions to problems created by its resilient nature.
Collapse
Affiliation(s)
| | | | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
6
|
Brackish and Hypersaline Lakes as Potential Reservoir for Enzymes Involved in Decomposition of Organic Materials on Frescoes. FERMENTATION 2022. [DOI: 10.3390/fermentation8090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study highlights the decomposing role through the hydrolytic activities of fungi isolated from natural environments represented by brackish and hypersaline lakes in Romania. Novel strains belonging to the Penicillium, Aspergillus, and Emericellopsis genera were isolated and screened for the ability to produce extracellular hydrolytic enzymes, i.e., proteases, lipases, amylases, cellulases, xylanases, and pectinases. According to salt requirements, they were classified as moderate halophilic and halotolerant strains. Agar plate-based assays with Tween 80, slide cultures with organic deposits, and quantitative evaluation allowed the selection of Aspergillus sp. BSL 2-2, Penicillium sp. BSL 3-2, and Emericellopsis sp. MM2 as potentially good decomposers of organic matter not only in lakes but also on deposits covering the mural paintings. Experiments performed on painted experimental models revealed that only Penicillium sp. BSL 3-2 decomposed Paraloid B72, transparent dispersion of casein, beeswax, sunflower oil, and soot. Moreover, using microscopic, spectroscopic, and imaging methods, it was proved the efficiency of Penicillium sp. BSL 3-2 for decomposition of organic deposits artificially applied on frescoes fragments.
Collapse
|