1
|
Costa MADC, da Silva Duarte V, Fraiz GM, Cardoso RR, da Silva A, Martino HSD, Dos Santos D'Almeida CT, Ferreira MSL, Corich V, Hamaker BR, Giacomini A, Bressan J, de Barros FAR. Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and without Obesity. J Nutr 2024:S0022-3166(24)01239-2. [PMID: 39732435 DOI: 10.1016/j.tjnut.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast, has shown potential in modulating gut microbiota, although no clinical trials have been done. OBJECTIVES We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity. METHODS A pre-post clinical intervention study was conducted lasting 8 wk. Forty-six participants were allocated into 2 groups: normal weight + black tea kombucha (n = 23); and obese + black tea kombucha (n = 23). Blood, urine, and stool samples were collected at baseline (T0) and after 8 wk of intervention (T8). RESULTS A total of 145 phenolic compounds were identified in the kombucha, primarily flavonoids (81%) and phenolic acids (19%). Kombucha favored commensal bacteria such as Bacteroidota and Akkermanciaceae, especially in the obese group. Subdoligranulum, a butyrate producer, also increased in the obese group after kombucha consumption (P = 0.031). Obesity-associated genera Ruminococcus and Dorea were elevated in the obese group at baseline (P < 0.05) and reduced after kombucha consumption, becoming similar to the normal weight group (Ruminococcus: obese T8 × normal weight T8: P = 0.27; Dorea: obese T8 × normal weight T0: P = 0.57; obese T8 × normal weight T8: P = 0.32). Fungal diversity increased, with a greater abundance of Saccharomyces in both groups and reductions in Exophiala and Rhodotorula, particularly in the obese group. Pichia and Dekkera, key microorganisms in kombucha, were identified as biomarkers after the intervention. CONCLUSIONS Regular kombucha consumption positively influenced gut microbiota in both normal and obese groups, with more pronounced effects in the obese group, suggesting that it may be especially beneficial for those individuals. This trial was registered at Brazilian Clinical Trial Registry - ReBEC as UTN code U1111-1263-9550 (https://ensaiosclinicos.gov.br/rg/RBR-9832wsx).
Collapse
Affiliation(s)
- Mirian Aparecida de Campos Costa
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - Rodrigo Rezende Cardoso
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Alessandra da Silva
- Public Health Epidemiology Graduate Program, Environmental and Health Education Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Frederico Augusto Ribeiro de Barros
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Saiman L, Waters V, LiPuma JJ, Hoffman LR, Alby K, Zhang SX, Yau YC, Downey DG, Sermet-Gaudelus I, Bouchara JP, Kidd TJ, Bell SC, Brown AW. Practical Guidance for Clinical Microbiology Laboratories: Updated guidance for processing respiratory tract samples from people with cystic fibrosis. Clin Microbiol Rev 2024; 37:e0021521. [PMID: 39158301 PMCID: PMC11391703 DOI: 10.1128/cmr.00215-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Collapse
Affiliation(s)
- Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yvonne C Yau
- Division of Microbiology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Ireland
| | | | - Jean-Philippe Bouchara
- University of Angers-University of Brest, Infections Respiratoires Fongiques, Angers, France
| | - Timothy J Kidd
- Microbiology Division, Pathology Queensland Central Laboratory, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- The Translational Research Institute, Brisbane, Australia
| | - A Whitney Brown
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
3
|
Barrera C, Schwarz C, Delhaes L, Le Gal S, Ramel S, Gangneux JP, Guitard J, Hoffmann C, Bellanger AP, Bouchara JP, Millon L. Detection of Specific IgE against Molds Involved in Allergic Bronchopulmonary Mycoses in Patients with Cystic Fibrosis. Mycopathologia 2024; 189:68. [PMID: 39023843 DOI: 10.1007/s11046-024-00870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT Allergic bronchopulmonary mycoses (ABPM) can be due to molds other than Aspergillus fumigatus in patients with cystic fibrosis (pwCF). We aimed to develop immunoassays for the detection of specific IgE (sIgE) directed against five fungal species involved in ABPM: Aspergillus terreus, Scedosporium apiospermum, Lomentospora prolificans, Rasamsonia argillacea, and Exophiala dermatitidis. MATERIALS AND METHODS Serum samples (n = 356) from 238 pwCF, collected in eight CF care centers in France, Germany, and Italy, were analyzed by dissociated enhanced lanthanide fluorescent immunoassay (DELFIA®) to assess levels of sIgE directed against antigenic extracts of each fungus. Clinical, biological, and radiological data were collected for each episode. One hundred serum samples from healthy blood donors were used as controls. Sera were classified into four groups depending on the level of sIgE according to the quartile repartition calculated for the pwCF population. A score of 4 for values above the 3rd quartile corresponds to an elevated level of sIgE. RESULTS PwCF showed higher levels of sIgE than controls. Based on criteria from the ABPA-ISHAM working group, with an additional criterion of "a sIgE score of 4 for at least one non-A. fumigatus mold", we were able to diagnose six cases of ABPM. CONCLUSIONS Using 417 IU/mL as the threshold for total IgE and the same additional criterion, we identified seven additional pwCF with "putative ABPM". Detection of sIgE by DELFIA® showed good analytical performance and supports the role played by non-A. fumigatus molds in ABPM. However, commercially available kits usable in routine practice are needed to improve the diagnosis of ABPM.
Collapse
Affiliation(s)
- Coralie Barrera
- UMR CNRS 6249 Chrono Environnement, University of Franche-Comté, Besançon, France.
- Mycology-Parasitology Department, University hospital of Besançon, Besançon, France.
| | - Carsten Schwarz
- Division of Cystic Fibrosis, Centre Berlin-Charité, Berlin, Germany
- CF Center Potsdam, Clinic Westbrandenburg, HMU-Health and Medical University, Potsdam, Germany
| | - Laurence Delhaes
- Mycology-Parasitology Department, CNR Des Aspergilloses Chroniques, University Hospital of Bordeaux, Bordeaux, France
| | - Solène Le Gal
- Laboratory of Parasitology-Mycology, Brest University Hospital, Brest, France
- Fungal Respiratory Infections (FRI), University of Angers, University of Brest, Brest, France
| | - Sophie Ramel
- Cystic Fibrosis Center, Fondation Ildys, Roscoff, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail), UMR_S 1085, Rennes, France
- Laboratory of Parasitology-Mycology, Centre National de Référence Des Mycoses Et Antifongiques LA-AspC Aspergilloses Chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Juliette Guitard
- Inserm, Centre de Recherche Saint-Antoine, Centre de Recherche Scientifique Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Sorbonne Université, Paris, France
| | - Claire Hoffmann
- Laboratory of Parasitology-Mycology, Angers University Hospital, Angers, France
| | - Anne-Pauline Bellanger
- UMR CNRS 6249 Chrono Environnement, University of Franche-Comté, Besançon, France
- Mycology-Parasitology Department, University hospital of Besançon, Besançon, France
| | - Jean-Philippe Bouchara
- Laboratory of Parasitology-Mycology, Angers University Hospital, Angers, France
- Fungal Respiratory Infections (FRI), Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques" (SFR ICAT), University of Angers, University of Brest, Angers, France
| | - Laurence Millon
- UMR CNRS 6249 Chrono Environnement, University of Franche-Comté, Besançon, France
- Mycology-Parasitology Department, University hospital of Besançon, Besançon, France
| |
Collapse
|
4
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|