1
|
Ma G, Wang H, Qi K, Ma L, Zhang B, Zhang Y, Jiang H, Wu X, Qi J. Isolation, characterization, and pathogenicity of Fusarium species causing crown rot of wheat. Front Microbiol 2024; 15:1405115. [PMID: 38873144 PMCID: PMC11169711 DOI: 10.3389/fmicb.2024.1405115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Fusarium crown rot (FCR) is one of the most important soilborne diseases affecting wheat production. To investigate the diversity of the pathogens causing this disease, 199 diseased wheat samples were collected from 13 cities in Shandong province. In total, 468 isolates were obtained, and from these isolates, 11 Fusarium species were identified based on phylogenetic analyses with the translation elongation factor-1α (TEF-1α), RNA polymerase II largest subunit (RPB1), and RNA polymerase II second largest subunit (RPB2) gene sequences. Of these Fusarium isolates, 283 were identified as Fusarium pseudograminearum and the remaining isolates were identified as Fusarium graminearum (n = 113), Fusarium sinensis (n = 28), Fusarium acuminatum (n = 18), Fusarium incarnatum (n = 13), Fusarium ipomoeae (n = 5), Fusarium flocciferum (n = 3), Fusarium proliferatum (n = 2), Fusarium asiaticum (n = 1), Fusarium culmorum (n = 1), and Fusarium oxysporum (n = 1), suggesting that F. pseudograminearum is the dominant pathogen of FCR of wheat in Shandong province. Pathogenicity tests demonstrated that all 11 Fusarium species could cause typical symptoms of FCR on wheat seedlings. The results of the study indicate that a greater diversity of Fusarium species can cause FCR of wheat in Shandong province than that has been previously reported. This is the first report in the world of Fusarium incarnatum, Fusarium ipomoeae, and Fusarium flocciferum as pathogens causing FCR in wheat.
Collapse
Affiliation(s)
- Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Heng Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Kai Qi
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Liguo Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Bo Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Yueli Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Hang Jiang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junshan Qi
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan, China
| |
Collapse
|
2
|
Zhang J, Zhang J, Wang J, Zhang M, Li C, Wang W, Suo Y, Song F. Population Genetic Analyses and Trichothecene Genotype Profiling of Fusarium pseudograminearum Causing Wheat Crown Rot in Henan, China. J Fungi (Basel) 2024; 10:240. [PMID: 38667911 PMCID: PMC11051422 DOI: 10.3390/jof10040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
In China, Fusarium pseudograminearum has emerged as a major pathogen causing Fusarium crown rot (FCR) and caused significant losses. Studies on the pathogen's properties, especially its mating type and trichothecene chemotypes, are critical with respect to disease epidemiology and food/feed safety. There are currently few available reports on these issues. This study investigated the species composition, mating type idiomorphs, and trichothecene genotypes of Fusarium spp. causing FCR in Henan, China. A significant shift in F. pseudograminearum-induced FCR was found in the present study. Of the 144 purified strains, 143 were F. pseudograminearum, whereas only 1 Fusarium graminearum was identified. Moreover, a significant trichothecene-producing capability of F. pseudograminearum strains from Henan was observed in this work. Among the 143 F. pseudograminearum strains identified, F. pseudograminearum with a 15ADON genotype was found to be predominant (133 isolates), accounting for 92.36% of all strains, followed by F. pseudograminearum with a 3ADON genotype, whereas only one NIV genotype strain was detected. Overall, a relatively well-balanced 1:1 ratio of the F. pseudograminearum population was found in Henan. To the best of our knowledge, this is the first study that has examined the Fusarium populations responsible for FCR across the Henan wheat-growing region.
Collapse
Affiliation(s)
- Jianzhou Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.Z.); (C.L.)
| | - Jiahui Zhang
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China;
| | - Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Mengyuan Zhang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Chunying Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (J.Z.); (C.L.)
| | - Wenyu Wang
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Yujuan Suo
- Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (M.Z.); (W.W.); (Y.S.)
| | - Fengping Song
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China;
| |
Collapse
|
3
|
Aditya S, Aggarwal R, Bashyal BM, Gurjar MS, Saharan MS, Aggarwal S. Unraveling the dynamics of wheat leaf blight complex: isolation, characterization, and insights into pathogen population under Indian conditions. Front Microbiol 2024; 15:1287721. [PMID: 38450160 PMCID: PMC10915091 DOI: 10.3389/fmicb.2024.1287721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Wheat, a staple food crop for 35% of the global population, faces a threat from Helminthosporium leaf blight (HLB), a complex of spot blotch (Bipolaris sorokiniana) and tan spot (Pyrenophora-tritici-repentis) diseases under warm and humid conditions. However, in Indian conditions, the knowledge of existing pathogen populations associated with the HLB complex is limited and largely dominated by only B. sorokiniana (spot blotch). To address this, diseased samples were collected from all six wheat growing zones during 2020-2022. The pathogenic species were identified through in-depth morphological characterization, supplemented with ITS-rDNA and GAPDH sequence analysis, a diagnostic SCAR marker, and pathogenicity studies on two wheat varieties: Sonalika and HD2733. The 32 isolates collected from 10 different states consist of B. spicifera (12.5% of all isolates), Exserohilum rostratum (9.3%), Bipolaris oryzae (3.1%), and B. sorokiniana (75%). B. sorokiniana exhibited the highest disease severity on both varieties. Other lesser-known pathogenic species also produced comparable disease severity as B. sorokiniana isolates and, therefore are economically important. Unraveling pathogen composition and biology aids in disease control and resistance breeding. Our study highlights economically impactful and lesser-known pathogenic species causing wheat leaf blight/spot blotch in India, guiding both current management and future resistance breeding strategies in plant pathology.
Collapse
Affiliation(s)
- Sanghmitra Aditya
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | | |
Collapse
|
4
|
Ren Q, Khan A, Zhang J, Bao Y, Khan MT, Wang J, Xu S, Zhang M. Fungal community dynamics associated with the outbreaks of sugarcane root rot disease. Microbiol Spectr 2024; 12:e0309023. [PMID: 38189328 PMCID: PMC10845956 DOI: 10.1128/spectrum.03090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Sugarcane is a critical sugar and bioenergy crop in China. However, numerous factors, including root rot disease, hamper its yield. Root rot disease is a severe agricultural issue, reducing yield and threatening sustainable crop production. The current study aimed to explore the fungal community structure, identify and characterize the primary pathogen for sugarcane root rot in Guangzhou, China. Eighty-nine samples of sugarcane root, stalk, rhizosphere soil, and irrigation water were collected from five sites in Guangzhou, China. Subsequently, 276 fungal strains were isolated to identify the primary pathogens. The five most common genera identified were Penicillium, Fusarium, Gongronella, Trichoderma, and Cladosporium. Fusarium was more prevalent in the infected soil samples than in healthy ones. Pathogenic assays of the strains revealed that the strain GX4-46 caused 80% of the disease. The strain was confirmed as Fusarium commune through phylogenetic and genome sequence analysis. Rhizosphere soil samples from different regional crops were collected to better understand the fungal community structure and the primary pathogen. We observed a significant presence of Fusarium in irrigation water, indicating that the root rot disease could originate from the irrigation water and then spread as a soil-borne disease. This research is pioneering and one of the most comprehensive investigations on the occurrence and prevalence of sugarcane root rot disease. This study will serve as a reference for expanding the sugarcane industry and a foundation for further exploration and control of root rot.IMPORTANCESugarcane, a significant economic crop, faces challenges due to root rot pathogens that accumulate each year in plants and soil through ratoon planting. This disrupts soil microbial balance and greatly impedes sugarcane industry growth. Symptoms range from wilting and yellowing leaves to stunted growth and reduced seedling tillers. The rhizosphere microbiota plays an important role in plant development and soil health. Little is known about root rot fungal community structure, especially in sugarcane. Here, we focused on exploring the main causative pathogen of root rot in the area alongside a detailed survey of the rhizosphere soil of different severity sugarcane cultivars and rotation crops of the region. To validate the findings, we also investigated the irrigation water of the area. Our study revealed Fusarium commune as the causative pathogen of root rot in the area, primarily originating from water and later as soil-borne. Using Trichoderma can control the disease effectively.
Collapse
Affiliation(s)
- Qingxiao Ren
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jinxu Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yixue Bao
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Muhammad Tahir Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Jihua Wang
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shiqiang Xu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Yang H, Cui S, Wei Y, Li H, Hu J, Yang K, Wu Y, Zhao Z, Li J, Wang Y, Yang H. Antagonistic effects of Talaromyces muroii TM28 against Fusarium crown rot of wheat caused by Fusarium pseudograminearum. Front Microbiol 2024; 14:1292885. [PMID: 38235437 PMCID: PMC10791928 DOI: 10.3389/fmicb.2023.1292885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is a serious threat to wheat production worldwide. This study aimed to assess the effects of Talaromyces muroii strain TM28 isolated from root of Panax quinquefolius against F. pseudograminearum. The strain of TM28 inhibited mycelial growth of F. pseudograminearum by 87.8% at 72 h, its cell free fermentation filtrate had a strong antagonistic effect on mycelial growth and conidial germination of F. pseudograminearum by destroying the integrity of the cell membrane. In the greenhouse, TM28 significantly increased wheat fresh weight and height in the presence of pathogen Fp, it enhanced the antioxidant defense activity and ameliorated the negative effects of F. pseudograminearum, including disease severity and pathogen abundance in the rhizosphere soil, root and stem base of wheat. RNA-seq of F. pseudograminearum under TM28 antagonistic revealed 2,823 differentially expressed genes (DEGs). Most DEGs related to cell wall and cell membrane synthesis were significantly downregulated, the culture filtrate of TM28 affected the pathways of fatty acid synthesis, steroid synthesis, glycolysis, and the citrate acid cycle. T. muroii TM28 appears to have significant potential in controlling wheat Fusarium crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | - Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | |
Collapse
|
6
|
Laasli SE, Barka EA, Lahlali R. Plant and Trees Pathogens: Isolation, Characterization and Control Strategies (1.0). J Fungi (Basel) 2023; 9:jof9040416. [PMID: 37108871 PMCID: PMC10144702 DOI: 10.3390/jof9040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Agricultural production is under constant threat from biotic and abiotic stresses [...]
Collapse
|
7
|
Fungal Pathogens Associated with Crown and Root Rot in Wheat-Growing Areas of Northern Kyrgyzstan. J Fungi (Basel) 2023; 9:jof9010124. [PMID: 36675945 PMCID: PMC9867107 DOI: 10.3390/jof9010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/17/2023] Open
Abstract
Fungal species associated with crown and root rot diseases in wheat have been extensively studied in many parts of the world. However, no reports on the relative importance and distribution of pathogens associated with wheat crown and root rot in Kyrgyzstan have been published. Hence, fungal species associated with wheat crown/root rot were surveyed in three main wheat production regions in northern Kyrgyzstan. Fungal species were isolated on 1/5 strength potato-dextrose agar amended with streptomycin (0.1 g/L) and chloramphenicol (0.05 g/L). A total of 598 fungal isolates from symptomatic tissues were identified using morphological features of the cultures and conidia, as well as sequence analysis of the nuclear ribosomal internal transcribed spacer (ITS) region, the translation elongation factor 1α (TEF1), and the RNA polymerase II beta subunit (RPB2) genes. The percentage of fields from which each fungus was isolated and their relative percentage isolation levels were determined. Bipolaris sorokiniana, the causal agent of common root rot, was the most prevalent pathogenic species isolated, being isolated from 86.67% of the fields surveyed at a frequency of isolation of 40.64%. Fusarium spp. accounted for 53.01% of all isolates and consisted of 12 different species. The most common Fusarium species identified was Fusarium acuminatum, which was isolated from 70% of the sites surveyed with an isolation frequency of 21.57%, followed by Fusarium culmorum, Fusarium nygamai, Fusarium oxysporum, and Fusarium equiseti, all of which had a field incidence of more than 23%. Inoculation tests with 44 isolates representing 17 species on the susceptible Triticum aestivum cv. Seri 82 revealed that Fusarium pseudograminearum and F. culmorum isolates were equally the most virulent pathogens. The widespread distribution of moderately virulent B. sorokiniana appears to be a serious threat to wheat culture, limiting yield and quality. With the exception of F. culmorum, the remaining Fusarium species did not pose a significant threat to wheat production in the surveyed areas because common species, such as F. acuminatum, F. nygamai, F. oxysporum, and F. equiseti, were non-pathogenic but infrequent species, such as Fusarium redolens, Fusarium algeriense, and F. pseudograminearum, were highly or moderately virulent. Curvularia inaequalis, which was found in three different fields, was mildly virulent. The remaining Fusarium species, Fusarium solani, Fusarium proliferatum, Fusarium burgessii, and Fusarium tricinctum, as well as Microdochium bolleyi, Microdochium nivale, and Macrophomina phaseolina, were non-pathogenic and considered to be secondary colonizers. The implications of these findings are discussed.
Collapse
|
8
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|