1
|
Azadnia A, Mikryukov V, Anslan S, Hagh-Doust N, Rahimlou S, Tamm H, Tedersoo L. Structure of plant-associated microeukaryotes in roots and leaves of aquatic and terrestrial plants revealed by blocking peptide-nucleic acid (PNA) amplification. FEMS Microbiol Ecol 2023; 99:fiad152. [PMID: 38012113 DOI: 10.1093/femsec/fiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.
Collapse
Affiliation(s)
- Avid Azadnia
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Vladimir Mikryukov
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Niloufar Hagh-Doust
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Heidi Tamm
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Leho Tedersoo
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| |
Collapse
|
2
|
Abad Z, Burgess T, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl J, Verkleij G, Broders K, Schena L, Redford A. Phytophthora : taxonomic and phylogenetic revision of the genus. Stud Mycol 2023; 106:259-348. [PMID: 38298569 PMCID: PMC10825748 DOI: 10.3114/sim.2023.106.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Many members of the Oomycota genus Phytophthora cause economic and environmental impact diseases in nurseries, horticulture, forest, and natural ecosystems and many are of regulatory concern around the world. At present, there are 223 described species, including eight unculturable and three lost species. Twenty-eight species need to be redescribed or validated. A lectotype, epitype or neotype was selected for 20 species, and a redescription based on the morphological/molecular characters and phylogenetic placement is provided. In addition, the names of five species are validated: P. cajani, P. honggalleglyana (Synonym: P. hydropathica), P. megakarya, P. pisi and P. pseudopolonica for which morphology and phylogeny are given. Two species, P. ×multiformis and P. uniformis are presented as new combinations. Phytophthora palmivora is treated with a representative strain as both lecto- and epitypification are pending. This manuscript provides the updated multigene phylogeny and molecular toolbox with seven genes (ITS rDNA, β-tub, COI, EF1α, HSP90, L10, and YPT1) generated from the type specimens of 212 validly published, and culturable species (including nine hybrid taxa). The genome information of 23 types published to date is also included. Several aspects of the taxonomic revision and phylogenetic re-evaluation of the genus including species concepts, concept and position of the phylogenetic clades recognized within Phytophthora are discussed. Some of the contents of this manuscript, including factsheets for the 212 species, are associated with the "IDphy: molecular and morphological identification of Phytophthora based on the types" online resource (https://idtools.org/tools/1056/index.cfm). The first version of the IDphy online resource released to the public in September 2019 contained 161 species. In conjunction with this publication, we are updating the IDphy online resource to version 2 to include the 51 species recently described. The current status of the 223 described species is provided along with information on type specimens with details of the host (substrate), location, year of collection and publications. Additional information is provided regarding the ex-type culture(s) for the 212 valid culturable species and the diagnostic molecular toolbox with seven genes that includes the two metabarcoding genes (ITS and COI) that are important for Sanger sequencing and also very valuable Molecular Operational Taxonomic Units (MOTU) for second and third generation metabarcoding High-throughput sequencing (HTS) technologies. The IDphy online resource will continue to be updated annually to include new descriptions. This manuscript in conjunction with IDphy represents a monographic study and the most updated revision of the taxonomy and phylogeny of Phytophthora, widely considered one of the most important genera of plant pathogens. Taxonomic novelties: New species: Phytophthora cajani K.S. Amin, Baldev & F.J. Williams ex Abad, Phytophthora honggalleglyana Abad, Phytophthora megakarya Brasier & M.J. Griffin ex Abad, Phytophthora pisi Heyman ex Abad, Phytophthora pseudopolonica W.W. Li, W.X. Huai & W.X. Zhao ex Abad & Kasiborski; New combinations: Phytophthora ×multiformis (Brasier & S.A. Kirk) Abad, Phytophthora uniformis (Brasier & S.A. Kirk) Abad; Epitypifications (basionyms): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora inundata Brasier et al., Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Lectotypifications (basionym): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Neotypifications (basionym): Phloeophthora syringae Kleb., Phytophthora meadii McRae Citation: Abad ZG, Burgess TI, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl JC, Verkleij G, Broders K, Schena L, Redford AJ (2023). Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259-348. doi: 10.3114/sim.2023.106.05.
Collapse
Affiliation(s)
- Z.G. Abad
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia;
| | - T. Bourret
- Department of Plant Pathology, University of California, Davis, CA, USA,
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - S.O. Cacciola
- Department of Agricultural, Food and Environment, University of Catania, Italy;
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Italy;
| | - R. Mathew
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - B. Kasiborski
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - S. Srivastava
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - K. Kageyama
- River Basin Research Center, Gifu University, Japan,
| | - J.C. Bienapfl
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - G. Verkleij
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - K. Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA;
| | - L. Schena
- Dipartimento di Agraria, Mediterranean University of Reggio Calabria, Italy,
| | - A.J. Redford
- USDA APHIS PPQ S&T Identification Technology Program, USA
| |
Collapse
|
3
|
Riit T, Cleary M, Adamson K, Blomquist M, Burokienė D, Marčiulynienė D, Oliva J, Poimala A, Redondo MA, Strømeng GM, Talgø V, Tedersoo L, Thomsen IM, Uimari A, Witzell J, Drenkhan R. Oomycete Soil Diversity Associated with Betula and Alnus in Forests and Urban Settings in the Nordic-Baltic Region. J Fungi (Basel) 2023; 9:926. [PMID: 37755034 PMCID: PMC10532727 DOI: 10.3390/jof9090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.
Collapse
Affiliation(s)
- Taavi Riit
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Mimmi Blomquist
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Daiva Burokienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Diana Marčiulynienė
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, LT-53101 Girionys, Lithuania
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC–Agrotecnio, 25198 Lleida, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Gunn Mari Strømeng
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Venche Talgø
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anne Uimari
- Natural Resources Institute Finland (LUKE), Juntintie 154, 77600 Suonenjoki, Finland
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| |
Collapse
|