1
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
2
|
Liu Y, Wu W, Xiao Y, Zou H, Hao S, Jiang Y. Application of metagenomic next-generation sequencing and targeted metagenomic next-generation sequencing in diagnosing pulmonary infections in immunocompetent and immunocompromised patients. Front Cell Infect Microbiol 2024; 14:1439472. [PMID: 39165919 PMCID: PMC11333343 DOI: 10.3389/fcimb.2024.1439472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) technology has been widely used to diagnose various infections. Based on the most common pathogen profiles, targeted mNGS (tNGS) using multiplex PCR has been developed to detect pathogens with predesigned primers in the panel, significantly improving sensitivity and reducing economic burden on patients. However, there are few studies on summarizing pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China on large scale. Methods From January 2021 to December 2023, bronchoalveolar lavage fluid (BALF) or sputum samples from 546 immunocompetent and immunocompromised patients with suspected community-acquired pneumonia were collected. Pathogen profiles in those patients on whom mNGS was performed were summarized. Additionally, we also evaluated the performance of tNGS in diagnosing pulmonary infections. Results Combined with results of mNGS and culture, we found that the most common bacterial pathogens were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii in both immunocompromised and immunocompetent patients with high detection rates of Staphylococcus aureus and Enterococcus faecium, respectively. For fungal pathogens, Pneumocystis jirovecii was commonly detected in patients, while fungal infections in immunocompetent patients were mainly caused by Candida albicans. Most of viral infections in patients were caused by Human betaherpesvirus 5 and Human gammaherpesvirus 4. It is worth noting that, compared with immunocompetent patients (34.9%, 76/218), more mixed infections were found in immunocompromised patients (37.8%, 14/37). Additionally, taking final comprehensive clinical diagnoses as reference standard, total coincidence rate of BALF tNGS (81.4%, 48/59) was much higher than that of BALF mNGS (40.0%, 112/280). Conclusions Our findings supplemented and classified the pathogen profiles of pulmonary infections in immunocompetent and immunocompromised patients in Jilin Province of China. Most importantly, our findings can accelerate the development and design of tNGS specifically used for regional pulmonary infections.
Collapse
Affiliation(s)
- Yong Liu
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Wencai Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunping Xiao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyan Zou
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Sijia Hao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Yi X, Lu H, Liu X, He J, Li B, Wang Z, Zhao Y, Zhang X, Yu X. Unravelling the enigma of the human microbiome: Evolution and selection of sequencing technologies. Microb Biotechnol 2024; 17:e14364. [PMID: 37929823 PMCID: PMC10832515 DOI: 10.1111/1751-7915.14364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
The human microbiome plays a crucial role in maintaining health, with advances in high-throughput sequencing technology and reduced sequencing costs triggering a surge in microbiome research. Microbiome studies generally incorporate five key phases: design, sampling, sequencing, analysis, and reporting, with sequencing strategy being a crucial step offering numerous options. Present mainstream sequencing strategies include Amplicon sequencing, Metagenomic Next-Generation Sequencing (mNGS), and Targeted Next-Generation Sequencing (tNGS). Two innovative technologies recently emerged, namely MobiMicrobe high-throughput microbial single-cell genome sequencing technology and 2bRAD-M simplified metagenomic sequencing technology, compensate for the limitations of mainstream technologies, each boasting unique core strengths. This paper reviews the basic principles and processes of these three mainstream and two novel microbiological technologies, aiding readers in understanding the benefits and drawbacks of different technologies, thereby guiding the selection of the most suitable method for their research endeavours.
Collapse
Affiliation(s)
- Xin Yi
- Department of PharmacyShanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Hong Lu
- Department of Clinical laboratoryThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Junyi He
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Bing Li
- Department of Public HealthShanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Zhelong Wang
- Department of PharmacyGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Yujing Zhao
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xinri Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuanPeople's Republic of China
| |
Collapse
|
5
|
Awan J, Faherty LJ, Willis HH. Navigating Uncertainty in Public Health Decisionmaking: The Role of a Value of Information Framework in Threat Agnostic Biosurveillance. Health Secur 2024; 22:39-44. [PMID: 38079227 DOI: 10.1089/hs.2023.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Affiliation(s)
- Jalal Awan
- Jalal Awan, MS, MPhil, PhD, is an Energy and Climate Policy Analyst, The Utility Reform Network, Oakland, CA, and an Assistant Policy Researcher, RAND Corporation, Santa Monica, CA
| | - Laura J Faherty
- Laura J. Faherty, MD, MPH, MSHP, is a Physician Policy Researcher, RAND Corporation, and an Attending Physician, Maine Medical Center, Portland, ME
| | - Henry H Willis
- Henry H. Willis, PhD, is a Senior Policy Researcher, RAND Corporation, Pittsburgh, PA
| |
Collapse
|
6
|
Cheng H, Wu H, Tan N, Liu Z, Wang N, Chen N, Li C. Diagnostic Efficacy of Metagenomic Next-Generation Sequencing in Patients with Spinal Infections: A Retrospective Study. Infect Drug Resist 2023; 16:7613-7620. [PMID: 38107430 PMCID: PMC10725644 DOI: 10.2147/idr.s435466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Early diagnosis of spinal infections remains challenging, and emerging metagenomic next-generation sequencing (mNGS) technology holds promise in addressing this issue. The aim of this study is to investigate the diagnostic efficacy of mNGS in spinal infections. Patients and Methods A total of 78 cases with suspected spinal infections were enrolled in this study, all of whom underwent laboratory, histopathological and mNGS examinations upon admission. Lesion samples were obtained by surgical or C-arm-guided puncture. Sensitivity, specificity, positive predictive value and negative predictive value of culture and mNGS were calculated for statistical analysis. Results With histopathological results as the reference, the included 78 patients were categorized into 50 cases in the spinal infection group and 28 cases in the aseptic group. The sensitivity (84%) and negative predictive value (77.14%) of mNGS were significantly higher than those of culture (32% and 44.26%, respectively), whereas no significant differences were observed in terms of specificity and positive predictive value. In the subgroup analysis for Mycobacterium tuberculosis, the sensitivity of mNGS (90.91%) and T-spot (90.91%) was significantly higher than that of culture (0). Additionally, mNGS demonstrated markedly higher specificity (100%) compared to T-spot (85.07%). Conclusion This study underscores the substantial advantages of mNGS in terms of diagnostic accuracy and bacterial coverage for spinal infections. The findings provide compelling clinical evidence that supports the enhanced diagnostic efficacy of mNGS.
Collapse
Affiliation(s)
- Hanwen Cheng
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Haoyu Wu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ni Tan
- Cellular and Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhuojie Liu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ning Wang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ningyi Chen
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Chunhai Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Teaching and Research Bureau of Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Xu J, Kong X, Li J, Mao H, Zhu Y, Zhu X, Xu Y. Pediatric intensive care unit treatment alters the diversity and composition of the gut microbiota and antimicrobial resistance gene expression in critically ill children. Front Microbiol 2023; 14:1237993. [PMID: 38029168 PMCID: PMC10679412 DOI: 10.3389/fmicb.2023.1237993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Common critical illnesses are a growing economic burden on healthcare worldwide. However, therapies targeting the gut microbiota for critical illnesses have not been developed on a large scale. This study aimed to investigate the changes in the characteristics of the gut microbiota in critically ill children after short-term pediatric intensive care unit (PICU) treatments. Methods Anal swab samples were prospectively collected from March 2021 to March 2022 from children admitted to the PICU of Xinhua Hospital who received broad-spectrum antibiotics on days 1 (the D1 group) and 7 (the D7 group) of the PICU treatment. The structural and functional characteristics of the gut microbiota of critically ill children were explored using metagenomic next-generation sequencing (mNGS) technology, and a comparative analysis of samples from D1 and D7 was conducted. Results After 7 days of PICU admission, a significant decrease was noted in the richness of the gut microbiota in critically ill children, while the bacterial diversity and the community structure between groups remained stable to some extent. The relative abundance of Bacilli and Lactobacillales was significantly higher, and that of Campylobacter hominis was significantly lower in the D7 group than in the D1 group. The random forest model revealed that Prevotella coporis and Enterobacter cloacae were bacterial biomarkers between groups. LEfSe revealed that two Gene Ontology entries, GO:0071555 (cell wall organization) and GO:005508 (transmembrane transport), changed significantly after the short-term treatment in the PICU. In addition, 30 KEGG pathways were mainly related to the activity of enzymes and proteins during the processes of metabolism, DNA catabolism and repair, and substance transport. Finally, 31 antimicrobial resistance genes had significantly different levels between the D7 and D1 groups. The top 10 up-regulated genes were Erm(A), ErmX, LptD, eptB, SAT-4, tetO, adeJ, adeF, APH(3')-IIIa, and tetM. Conclusion The composition, gene function, and resistance genes of gut microbiota of critically ill children can change significantly after short PICU treatments. Our findings provide a substantial basis for a better understanding of the structure and function of gut microbiota and their role in critical illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaya Xu
- Department of Pediatric Intensive Care Medicine, Xinhua Hospital, Affiliated to the Medical School, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wang S, Xing L. Metagenomic next-generation sequencing assistance in identifying non-tuberculous mycobacterial infections. Front Cell Infect Microbiol 2023; 13:1253020. [PMID: 37719673 PMCID: PMC10500063 DOI: 10.3389/fcimb.2023.1253020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction The advent of metagenomics next-generation sequencing (mNGS) has garnered attention as a novel method for detecting pathogenic infections, including Non-Tuberculous Mycobacterial (NTM) and tuberculosis (TB).However, the robustness and specificity of mNGS in NTM diagnostics have not been fully explored. Methods In this retrospective study, we enrolled 27 patients with NTM genomic sequences via mNGS and conducted a comprehensive clinical evaluation. Results Pulmonary NTM disease was the most commonly observed presentation, with a subset of patients also presenting with extrapulmonary NTM infections.mNGS analysis identified six distinct NTM species, primarily Mycobacteriumavium complex (MAC), followed by Mycobacterium intracellulare andMycobacterium abscessus. Conventional routine culture methods encountered challenges, resulting in negative results for all available 22 samples. Among the 10 patients who underwent quantitative polymerase chain reaction (qPCR) testing, five tested positive for NTM. Discussion It is important to note that further species typing is necessary to determine the specific NTM type, as traditional pathogen detection methods serve as an initial step. In contrast, when supplemented with pathogen data, enables the identification of specific species, facilitating precise treatment decisions. In conclusion, mNGS demonstrates significant potential in aidingthe diagnosis of NTMdisease by rapidly detecting NTM pathogens and guiding treatment strategies. Its enhanced performance, faster turnaround time (TAT), and species identification capabilities make mNGS a promising tool for managing NTM infections.
Collapse
Affiliation(s)
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|