1
|
Stenger PL, Tribollet A, Guilhaumon F, Cuet P, Pennober G, Jourand P. A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island. MICROBIAL ECOLOGY 2025; 87:179. [PMID: 39870904 DOI: 10.1007/s00248-025-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion. The watersheds of the fringing reefs are small, steeply sloped, and are impacted by human activities with significant land use changes and hydrological modifications along the coast and up to mid-altitudes. Sediment, seawater, and coral rubble were sampled in austral summer and winter at each site. For each compartment, bacterial, fungal, microalgal, and protist communities were characterized by high throughput DNA sequencing methodology. Results show that the reef microbiome composition varied greatly with seasons and reef compartments, but variations were different among targeted markers. No significant variation among sites was observed. Relevant bioindicators were highlighted per taxonomic groups such as the Firmicutes:Bacteroidota ratio (8.4%:7.0%), the genera Vibrio (25.2%) and Photobacterium (12.5%) dominating bacteria; the Ascomycota:Basidiomycota ratio (63.1%:36.1%), the genera Aspergillus (40.9%) and Cladosporium (16.2%) dominating fungi; the genus Ostreobium (81.5%) in Chlorophyta taxon for microalgae; and the groups of Dinoflagellata (63.3%) and Diatomea (22.6%) within the protista comprising two dominant genera: Symbiodinium (41.7%) and Pelagodinium (27.8%). This study highlights that the identified bioindicators, mainly in seawater and sediment reef compartments, could be targeted by reef conservation stakeholders to better monitor La Réunion Island's reef state of health and to improve management plans.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IRD, CS 41095 - 2 Rue Joseph Wetzell, Parc Technologique Universitaire, 97495 Sainte Clotilde Cedex, La Réunion, France
- Omicsphere Analytics, 19 Rue Philippe Maupas, 37250, Montbazon, France
| | - Aline Tribollet
- IRD, UMR LOCEAN-IPSL (Sorbonne Université-IRD-CNRS-MNHN), Parc Technologique Universitaire, CS 41095 - 2 Rue Joseph Wetzell, 97495 Sainte Clotilde Cedex, La Réunion, France
| | - François Guilhaumon
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Pascale Cuet
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Gwenaelle Pennober
- Université de La Réunion, UMR ESPACE-DEV, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France
| | - Philippe Jourand
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
| |
Collapse
|
2
|
Žilka M, Hrabovský M, Dušička J, Zahradníková E, Gahurová D, Ščevková J. Comparative analysis of airborne fungal spore distribution in urban and rural environments of Slovakia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63145-63160. [PMID: 39477828 PMCID: PMC11599331 DOI: 10.1007/s11356-024-35470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Monitoring airborne fungal spores is crucial for public health and plant production since they belong to important aeroallergens and phytopathogens. Due to different land use, their concentration can differ significantly between urban and rural areas. We monitored their spectrum and quantity on two geographically close sites with a different degree of urbanisation: Bratislava City and Kaplna Village in Slovakia, located 38 km apart. We recorded the spectrum of airborne fungal spores over a year and confirmed the microscopic results by amplicon-based metagenomic analysis. The main spore season of the most frequent genera lasted over a week longer in Kaplna, but its intensity was approximately two-fold higher in Bratislava. This can be possibly connected to the microclimatic conditions of the urban area (especially wind speed and heat island effect) and the lesser use of fungicides. Cladosporium was the dominant genus on both sites, influencing the intensity most significantly. Through statistical analysis of the influence of meteorological parameters on airborne fungal spore levels, we identified a significant relationship with temperature, while the impact of other parameters varied depending on the spore type and release mechanism. Our results show the differences in airborne fungal spore levels between urban and rural areas and highlight the necessity for more monitoring stations in various environments.
Collapse
Affiliation(s)
- Matúš Žilka
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Michal Hrabovský
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jozef Dušička
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Eva Zahradníková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Dominika Gahurová
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| |
Collapse
|
3
|
Deng Y, Xiao W, Xiong Z, Sha A, Luo Y, Chen X, Li Q. Assembly Mechanism of Rhizosphere Fungi in Plant Restoration in Lead Zinc Mining Areas. Genes (Basel) 2024; 15:1398. [PMID: 39596598 PMCID: PMC11593579 DOI: 10.3390/genes15111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND So far, the assembly and response mechanism of soil fungi in the ecological restoration process of lead zinc mines is still unclear. METHODS In this study, we selected three plants for the ecological restoration of abandoned lead zinc mining areas and explored the community assembly mechanism by which soil fungi assist plants in adapting to the environment during the ecological restoration process. RESULTS The results revealed that the mining of lead zinc mines led to a significant decrease in soil fungal diversity, whereas the planting of three plants significantly increased the diversity of rhizosphere fungi. Mining activities significantly reduced the abundance of soil Fusarium, Macroventuria, Cladosporium, and Solicocozyma and increased the abundance of soil Helvella. After three ecologically restored plants were planted, the abundances of Fusarium and Cladosporium increased significantly, whereas the abundance of Helvella decreased significantly. In addition, Capronia was significantly enriched in the rhizosphere soils of three plant species in the mining area. β diversity and fungal guild analysis revealed that mining activities had a great impact on fungal communities and guilds. The ecological restoration of plants changed the guilds of rhizosphere fungi, making them closer to those of the control sample. In addition, the endophyte guild was significantly enriched in the rhizosphere soil of three ecologically restored plants, increasing their adaptability. CONCLUSIONS The results provide a reference for screening lead zinc mine bioremediation strains and developing fungal plant joint remediation strategies.
Collapse
Affiliation(s)
- Yue Deng
- School of China Alcoholic Drinks, Luzhou Vocational and Technology College, Luzhou 646000, China;
| | - Wenqi Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Zhuang Xiong
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Ajia Sha
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Yingyong Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Xiaodie Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| |
Collapse
|
4
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
5
|
Zhu T, Li Z, Liu X, Chen C, Mu Y. Comparative Analysis of Microbial Diversity and Metabolic Profiles during the Spontaneous Fermentation of Jerusalem Artichoke ( Helianthus tuberosus L.) Juice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2782. [PMID: 39409653 PMCID: PMC11479024 DOI: 10.3390/plants13192782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Jerusalem artichoke juice is valued for its nutritional content and health benefits. Spontaneous fermentation enhances its flavor, quality, and functional components through microbial metabolic activities. This study used high-throughput sequencing to analyze microbial community changes, and LC-MS and GC-MS to detect secondary metabolites and flavor compounds during fermentation. During natural fermentation, beneficial bacteria like Lactobacillus and Pediococcus increased, promoting lactic acid production and inhibiting harmful bacteria, while environmental bacteria decreased. Similarly, fungi shifted from environmental types like Geosmithia and Alternaria to fermentation-associated Pichia and Penicillium. A total of 1666 secondary metabolites were identified, with 595 upregulated and 497 downregulated. Key metabolic pathways included phenylpropanoid biosynthesis, with significant increases in phenylalanine, tryptophan, and related metabolites. Lipid and nucleotide metabolism also showed significant changes. Flavor compounds, including 134 identified alcohols, esters, acids, and ketones, mostly increased in content after fermentation. Notable increases were seen in Phenylethyl Alcohol, Ethyl Benzenepropanoate, 3-Methylbutyl Butanoate, Ethyl 4-Methylpentanoate, 5-Ethyl-3-Hydroxy-4-Methyl-2(5H)-Furanone, Ethyl Decanoate, Hexanoic Acid, and 1-Octanol. γ-aminobutyric acid (GABA) and other functional components enhanced the health value of the juice. This study provides insights into microbial and metabolic changes during fermentation, aiding in optimizing processes and improving the quality of fermented Jerusalem artichoke juice for functional food development.
Collapse
Affiliation(s)
- Tiandi Zhu
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Zhongwang Li
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Xinxing Liu
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Chen Chen
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Yuwen Mu
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
6
|
Guerra-Mateo D, Cano-Lira JF, Fernández-Bravo A, Gené J. Sunken Riches: Ascomycete Diversity in the Western Mediterranean Coast through Direct Plating and Flocculation, and Description of Four New Taxa. J Fungi (Basel) 2024; 10:281. [PMID: 38667952 PMCID: PMC11051201 DOI: 10.3390/jof10040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation (SMF) could represent a suitable solution. Here, we compare the effectiveness in recovering filamentous ascomycetes of direct plating and SMF in combination with three culture media and two incubation temperatures, and we describe the fungal diversity detected in marine sediments. Sediments were collected at different depths on two beaches (Miracle and Arrabassada) on the Spanish western Mediterranean coast between 2021 and 2022. We recovered 362 strains, and after a morphological selection, 188 were identified primarily with the LSU and ITS barcodes, representing 54 genera and 94 species. Aspergillus, Penicillium, and Scedosporium were the most common genera, with different percentages of abundance between both beaches. Arrabassada Beach was more heterogeneous, with 42 genera representing 60 species (Miracle Beach, 28 genera and 54 species). Although most species were recovered with direct plating (70 species), 20 species were exclusively obtained using SMF as a sample pre-treatment, improving our ability to detect fungi in culture. In addition, we propose three new species in the genera Exophiala, Nigrocephalum, and Queenslandipenidiella, and a fourth representing the novel genus Schizochlamydosporiella. We concluded that SMF is a useful technique that, in combination with direct plating, including different culture media and incubation temperatures, improves the chance of recovering marine fungal communities in culture-dependent studies.
Collapse
Affiliation(s)
| | | | | | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and Institut Universitari de Recerca en Sostenibilitat, Canvi Climàtic i Transició Energètica (IU-RESCAT), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.G.-M.); (J.F.C.-L.); (A.F.-B.)
| |
Collapse
|
7
|
Diver P, Ward BA, Cunliffe M. Physiological and morphological plasticity in response to nitrogen availability of a yeast widely distributed in the open ocean. FEMS Microbiol Ecol 2024; 100:fiae053. [PMID: 38599628 PMCID: PMC11062419 DOI: 10.1093/femsec/fiae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024] Open
Abstract
Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterized the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilization is present but not universal in marine yeasts, consistent with existing knowledge of nonmarine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.
Collapse
Affiliation(s)
- Poppy Diver
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Ben A Ward
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
8
|
Fernández-Valero AD, Karpov SA, Sampedro N, Gordi J, Timoneda N, Garcés E, Reñé A. Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates. Eur J Protistol 2024; 93:126053. [PMID: 38350179 DOI: 10.1016/j.ejop.2024.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Sergey A Karpov
- Department of Invertebrate Zoology, Biological Faculty, St Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St Petersburg 199034, Russia; North-Western State Medical University named after I.I. Mechnikov, Kirochnaya st. 41, St Petersburg 191015, Russia
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|
10
|
Li XH, Luo MM, Wang ZX, Wang Q, Xu B. The role of fungi in the diagnosis of colorectal cancer. Mycology 2023; 15:17-29. [PMID: 38558845 PMCID: PMC10977015 DOI: 10.1080/21501203.2023.2249492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 04/04/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent tumour with high morbidity rates worldwide, and its incidence among younger populations is rising. Early diagnosis of CRC can help control the associated mortality. Fungi are common microorganisms in nature. Recent studies have shown that fungi may have a similar association with tumours as bacteria do. As an increasing number of tumour-associated fungi are discovered, this provides new ideas for the diagnosis and prognosis of tumours. The relationship between fungi and colorectal tumours has also been recently identified by scientists. Therefore, this paper describes the limitations and prospects of the application of fungi in diagnosing CRC and predicting CRC prognosis.
Collapse
Affiliation(s)
- Xu-Huan Li
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming-Ming Luo
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zu-Xiu Wang
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Wang
- Department of Health Statistics, School of PubliHealth and Health Management, Gannan Medical University, Ganzhou, China
| | - Bin Xu
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
11
|
Breyer E, Baltar F. The largely neglected ecological role of oceanic pelagic fungi. Trends Ecol Evol 2023; 38:870-888. [PMID: 37246083 DOI: 10.1016/j.tree.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Most investigations into ocean ecology and biogeochemistry have tended to focus on marine bacteria, archaea, and protists, while pelagic fungi (mycoplankton) have traditionally been neglected and considered to reside only in association with benthic solid substrates. Nevertheless, recent studies have revealed that pelagic fungi are distributed ubiquitously throughout the water column in every ocean basin and play an active role in the degradation of organic matter and the cycling of nutrients. We review the current status of knowledge on the ecology of mycoplankton and highlight knowledge gaps and challenges. These findings underscore the need to recognize this neglected kingdom as significant contributors to the organic matter cycling and ecology of the oceans.
Collapse
Affiliation(s)
- Eva Breyer
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|