1
|
Masrour M, Khanmohammadi S, Fallahtafti P, Rezaei N. Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: A systematic review and meta-analysis. PLoS One 2023; 18:e0291921. [PMID: 37733767 PMCID: PMC10513217 DOI: 10.1371/journal.pone.0291921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a group of malignancies arising from the epithelium of the head and neck. Despite efforts in treatment, results have remained unsatisfactory, and the death rate is high. Early diagnosis of HNSCC has clinical importance due to its high rates of invasion and metastasis. This systematic review and meta-analysis evaluated the diagnostic accuracy of lncRNAs in HNSCC patients. METHODS PubMed, ISI, SCOPUS, and EMBASE were searched for original publications published till April 2023 using MeSH terms and free keywords "long non-coding RNA" and "head and neck squamous cell carcinoma" and their expansions. The Reitsma bivariate random effect model pooled diagnostic test performance for studies that reported specificity and sensitivity; diagnostic AUC values from all trials were meta-analyzed using the random effects model with the inverse variance method. RESULTS The initial database search yielded 3209 articles, and 25 studies met our criteria. The cumulative sensitivity and specificity for lncRNAs in the diagnosis of HNSCC were 0.74 (95%CI: 0.68-0.7 (and 0.79 (95%CI: 0.74-0.83), respectively. The pooled AUC value for all specimen types was found to be 0.83. Using the inverse variance method, 71 individual lncRNAs yielded a pooled AUC of 0.77 (95%CI: 0.74-0.79). Five studies reported on the diagnostic accuracy of the MALAT1 lncRNA with a pooled AUC value of 0.83 (95%CI: 0.73-0.94). CONCLUSIONS LncRNAs could be used as diagnostic biomarkers for HNSCC, but further investigation is needed to validate clinical efficacy and elucidate mechanisms. High-throughput sequencing and bioinformatics should be used to ascertain expression profiles.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
3
|
Ma L, Zhang L, Li L, Zhao L. The function of lncRNA EMX2OS/miR-653-5p and its regulatory mechanism in lung adenocarcinoma. Open Med (Wars) 2023; 18:20230686. [PMID: 37069939 PMCID: PMC10105521 DOI: 10.1515/med-2023-0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
This study aimed to evaluate the significance of EMX2OS in lung adenocarcinoma (LUAD) prognosis and development and its potential molecular mechanism. Paired tissue samples were collected from 117 LUAD patients. The EMX2OS expression level was detected by PCR and correlated with patients' clinicopathological features by a series of statistical analyses. The function of EMX2OS in cell proliferation and metastasis was evaluated by CCK8 and Transwell assay. In mechanism, the interaction between EMX2OS and miR-653-5p was assessed by the dual-luciferase reporter assay, and the regulatory effect of miR-653-5p on EMX2OS tumor suppressor role was also estimated. Significant downregulation of EMX2OS and its negative correlation with miR-653-5p was observed in LUAD tissues. A significant relationship was revealed in EMX2OS with TNM stage, lymph node metastasis, and differentiation of LUAD patients, and associated with the poor prognosis of patients. EMX2OS suppressed the proliferation and metastasis of LUAD cells and negatively regulated the expression of miR-653-5p. The overexpression of miR-653-5p could reverse the inhibitory effect of EMX2OS on LUAD cells. In conclusion, EMX2OS served as a biomarker in LUAD that indicated patients' prognosis and regulated cellular processes via regulating miR-653-5p.
Collapse
Affiliation(s)
- Lina Ma
- Thoracic Surgical Nursing, Qinhuangdao First Hospital, Qinhuangdao 066000, Hebei, China
| | - Lu Zhang
- Thoracic Surgical Nursing, Qinhuangdao First Hospital, Qinhuangdao 066000, Hebei, China
| | - Lin Li
- Thoracic Surgical Nursing, Qinhuangdao First Hospital, Qinhuangdao 066000, Hebei, China
| | - Li Zhao
- Thoracic Surgical Nursing, Qinhuangdao First Hospital, 258 Wenhua Road, Haigang District, Qinhuangdao 066000, Hebei, China
| |
Collapse
|
4
|
Chantre-Justino M, Alves G, Delmonico L. Clinical applications of liquid biopsy in HPV‐negative and HPV‐positive head and neck squamous cell carcinoma: advances and challenges. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:533-552. [PMID: 36071985 PMCID: PMC9446158 DOI: 10.37349/etat.2022.00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent the most common epithelial tumors that arise from mucosa of the oral cavity, pharynx, and larynx. The development of HNSCCs is usually associated with tobacco use, alcohol consumption, and human papillomavirus (HPV) infection. Most HNSCCs are diagnosed in advanced states, leading to a worse clinical outcome. Screening tests based on potential biomarkers associated with HNSCCs could improve this scenario. Liquid biopsy has emerged as a promising area of cancer investigation, offering a minimally invasive approach to track circulating biomarkers in body fluids that could potentially contribute to the diagnosis, predict prognosis, and monitor response to treatment. This review will discuss translational studies describing the clinical applications of liquid biopsy in HPV-negative and HPV-positive HNSCCs focused on circulating nucleic acids [cell-free DNA (cfDNA) and cell-free RNA (cfRNA)], circulating tumor cells (CTCs), and extracellular vesicles (EVs), which can be found in plasma, serum, and saliva.
Collapse
Affiliation(s)
- Mariana Chantre-Justino
- 1Research Division, National Institute of Traumatology and Orthopaedics (INTO), Rio de Janeiro 20940-070, Brazil 2Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- 2Circulating Biomarkers Laboratory, Pathology Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Lucas Delmonico
- 3Oncoclínicas Precision Medicine, Vila Nova Conceição, São Paulo 04513-020, Brazil
| |
Collapse
|
5
|
Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021; 204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.
Collapse
Affiliation(s)
- Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
6
|
Kozłowska J, Kolenda T, Poter P, Sobocińska J, Guglas K, Stasiak M, Bliźniak R, Teresiak A, Lamperska K. Long Intergenic Non-Coding RNAs in HNSCC: From "Junk DNA" to Important Prognostic Factor. Cancers (Basel) 2021; 13:2949. [PMID: 34204634 PMCID: PMC8231241 DOI: 10.3390/cancers13122949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Even a multimodal approach consisting of standard chemo- and radiotherapy along with surgical resection is only effective in approximately 50% of the cases. The rest of the patients develop a relapse of the disease and acquire resistance to treatment. Especially this group of individuals needs novel, personalized, targeted therapy. The first step to discovering such solutions is to investigate the tumor microenvironment, thus understanding the role and mechanism of the function of coding and non-coding sequences of the human genome. In recent years, RNA molecules gained great interest when the complex character of their impact on our biology allowed them to come out of the shadows of the "junk DNA" label. Furthermore, long non-coding RNAs (lncRNA), specifically the intergenic subgroup (lincRNA), are one of the most aberrantly expressed in several malignancies, which makes them particularly promising future diagnostic biomarkers and therapeutic targets. This review contains characteristics of known and validated lincRNAs in HNSCC, such as XIST, MALAT, HOTAIR, HOTTIP, lincRNA-p21, LINC02487, LINC02195, LINC00668, LINC00519, LINC00511, LINC00460, LINC00312, and LINC00052, with a description of their prognostic abilities. Even though much work remains to be done, lincRNAs are important factors in cancer biology that will become valuable biomarkers of tumor stage, outcome prognosis, and contribution to personalized medicine.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland
| | - Paulina Poter
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centere, Garbary 15, 61-866 Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, ul. Zwirki 61 and ul. Wigury, 02-091 Warsaw, Poland
| | - Maciej Stasiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| |
Collapse
|